

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 6015 Harris Parkway, Suite 110 Ft. Worth, Texas 76132

Lubbock, Texas 79424 El Paso, Texas 79922 Midland, Texas 79703

888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443 432 • 689 • 6301

FAX 915 • 585 • 4944 FAX 432 • 689 • 6313

817 • 201 • 5260

E-Mail: lab@traceanalysis.com

Certifications

WBENC: 237019

HUB:

1752439743100-86536

DBE: VN 20657

NCTRCA WFWB38444Y0909

NELAP Certifications

Lubbock:

T104704219-08-TX

El Paso:

T104704221-08-TX

Midland: T104704392-08-TX

LELAP-02003

LELAP-02002 Kansas E-10317

Analytical and Quality Control Report

Brad Davis Zia Engineering & Environmental 755 S. Telshor Blvd. Suite F-201 Las Cruces, NM, 88011

Report Date: September 22, 2009

Work Order:

9090810

Project Name: HELSTF Diesel Spill Groundwater

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis,

Inc.

			Date	Time	Date
\mathbf{Sample}	Description	Matrix	Taken	Taken	Received
209322	HLSF-0154-HCF-005-0909	water	2009-09-04	12:25	2009-09-08

Comment(s)

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 78 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Notes:

For inorganic analyses, the term MQL should actually read PQL.

Standard Flags

- ${f U}\,$ Not detected. The analyte is not detected above the SDL.
- ${f J}$ Estimated. The analyte is positively identified and the value is approximated between the SDL and MQL.
- B The sample contains less than ten times the concentration found in the method blank.
- JB The analyte is positively identified and the value is approximated between the SDL and MQL.

The sample contains less than ten times the concentration found in the method blank.

The result should be considered non-detect to the SDL.

Dr. Blair Leftwich, Director
Dr. Michael Abel, Project Manager

Case Narrative

Samples for project HELSTF Diesel Spill Groundwater were received by TraceAnalysis, Inc. on 2009-09-08 and assigned to work order 9090810. Samples for work order 9090810 were received intact without headspace and at a temperature of 19.0 deg. C, just sampled, on ice.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	QC	Analysis
Test	Method	Batch	Date	Batch	Date
Ag, Total	S 6010B	54109	2009-09-10 at 07:08	63415	2009-09-10 at 13:31
${ m Alkalinity}$	SM 2320B	54372	2009-09-15 at $11:00$	63683	2009-09-15 at 11:00
Al, Total	S 6010B	54109	2009-09-10 at $07:08$	63415	2009-09-10 at 13:31
${ m Ammonia}$	SM 4500-NH3 B,C	54190	2009-09-11 at $13:30$	63487	2009-09-11 at $16:00$
As, Total	S 6010B	54109	2009-09-10 at 07:08	63415	2009-09-10 at 13:31
Ba, Total	S 6010B	54109	2009-09-10 at $07:08$	63415	2009-09-10 at 13:31
Be, Total	S 6010B	54109	2009-09-10 at $07:08$	63415	2009-09-10 at 13:31
Bromide (IC)	E 300.0	54369	2009-09-04 at $21:52$	63680	2009-09-04 at $21:52$
Ca, Total	S 6010B	54109	2009-09-10 at $07:08$	63546	2009-09-15 at 08:58
Cd, Total	S 6010B	54109	2009-09-10 at $07:08$	63415	2009-09-10 at 13:31
Chloride (IC)	E 300.0	54369	2009-09-04 at $21:52$	63680	2009-09-04 at $21:52$
Chromium, Hexavalent	SM 3500-Cr B	54061	2009-09-04 at 17:30	63337	2009-09-04 at $17:30$
Co, Total	S 6010B	54109	2009-09-10 at 07:08	63415	2009-09-10 at $13:31$
Cr, Dissolved	S 6010B	54154	2009-09-11 at $08:26$	63462	2009-09-11 at $11:56$
Cr, Total	S 6010B	54109	2009-09-10 at $07:08$	63415	2009-09-10 at 13:31
Cu, Total	S 6010B	54109	2009-09-10 at $07:08$	63415	2009-09-10 at 13:31
Explosives (8330)	S 8330-C18	54138	2009-09-09 at $15:00$	63426	2009-09-10 at 15:30
Fe, Total	S 6010B	54109	2009-09-10 at $07:08$	63415	2009-09-10 at 13:31
Fluoride (IC)	E 300.0	54369	2009-09-04 at $21:52$	63680	2009-09-04 at $21:52$
Hg, Total	S 7470A	54088	2009-09-09 at 10:45	63372	2009-09-09 at $12:45$
K, Total	S 6010B	54109	2009-09-10 at 07:08	63546	2009-09-15 at 08:58
Mg, Total	S 6010B	54109	2009-09-10 at 07:08	63546	2009-09-15 at 08:58
Mn, Total	S_{010B}	54109	2009-09-10 at $07:08$	63415	2009-09-10 at 13:31
Mo, Total	S_{010B}	54109	2009-09-10 at $07:08$	63415	2009-09-10 at 13:31
Na, Total	S_{010B}	54109	2009-09-10 at $07:08$	63546	2009-09-15 at 08:58
Ni, Total	S 6010B	54109	2009-09-10 at 07:08	63415	2009-09-10 at $13:31$
Nitrate and Nitrite as N	SM 4500-NO3 E	54370	2009-09-17 at 09:43	63681	2009-09-17 at 15:44
O/G	$\to 1664$	54472	2009-09-22 at $08:31$	63805	2009-09-21 at $10:56$
Pb, Total	S 6010B	54109	2009-09-10 at 07:08	63415	2009-09-10 at $13:31$
pН	SM 4500-H+	54067	2009-09-04 at 11:30	63344	2009-09-04 at $11:30$
P, Total	S 6010B	54109	2009-09-10 at 07:08	63415	2009-09-10 at $13:31$
Sb, Total	S 6010B	54109	2009-09-10 at 07:08	63415	2009-09-10 at $13:31$
Semivolatiles	S 8270C	54112	2009-09-08 at 15:00	63393	2009-09-10 at 07:56
Se, Total	S_{010B}	54109	2009-09-10 at $07:08$	63415	2009-09-10 at 13:31
SO4 (IC)	E 300.0	54369	2009-09-04 at $21:52$	63680	2009-09-04 at $21:52$
TDS	SM 2540C	54174	2009-09-08 at $16:13$	63474	2009-09-08 at $16:13$
TKN	$\to 351.3$	54234	2009-09-13 at $16:30$	63531	2009-09-13 at $19:15$
Tl, Total	S_{010B}	54109	2009-09-10 at $07:08$	63415	2009-09-10 at 13:31
TOC	SM 5310C	54367	2009-09-17 at 15:01	63678	2009-09-17 at 15:01
Total Cyanide	SM 4500-CN C,E	54136	2009-09-10 at $10:30$	63422	2009-09-10 at $14:00$
TPH DRO	Mod. 8015B	54081	2009-09-08 at 15:00	63359	2009-09-08 at 18:00

		Prep	Prep	QC	${ m Analysis}$
Test	Method	Batch	Date	Batch	Date
TPH GRO	S~8015B	54070	2009-09-08 at 08:42	63348	2009-09-08 at $08:42$
V, Total	S_{6010B}	54109	2009-09-10 at 07:08	63415	2009-09-10 at 13:31
Zn, Total	S_{6010B}	54109	2009-09-10 at $07:08$	63415	2009-09-10 at 13:31

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 9090810 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 5 of 78

HELSTF Diesel Spill Groundwater

Analytical Report

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analytical Method: Analysis: Ag, Total S 6010B Prep Method: S 3010A RRQC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: Prep Batch: 54109Sample Preparation: 2009-09-10 Prepared By: KV

SDLMQLMethod Based Based Blank MQLMDL SDLParameter Result Result Result Units Dilution (Unadjusted) (Unadjusted) Flag Total Silver 0.00111 < 0.00111 < 0.00500< 0.00111mg/L0.00111 0.005

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Al, Total S 3010A Analysis: Analytical Method: S 6010B Prep Method: QC Batch: Date Analyzed: Analyzed By: 634152009-09-10 RRPrep Batch: 54109 Sample Preparation: 2009-09-10 Prepared By: KV

SDLMethod MQL Based Based Blank MQL MDLFlag Parameter Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) Total Aluminum < 0.00301 < 0.0500< 0.00301 mg/L0.003010.050.00301

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: El Paso

Analysis: Alkalinity Analytical Method: SM 2320BPrep Method: N/AQC Batch: 63683 Date Analyzed: 2009-09-15 Analyzed By: JGPrep Batch: Sample Preparation: Prepared By: 543722009-09-15 JR

SDLMQLMethod Based Based Blank MQLMDL Flag Parameter Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) Hydroxide Alkalinity mg/L as CaCo3 < 1.00 < 1.00 < 1.00 1.00 1 1 UCarbonate Alkalinity < 1.00 < 1.00 < 1.00mg/L as CaCo3 1 1.00 1 1 Bicarbonate Alkalinity 24802480< 4.00 mg/L as CaCo3 4.00 4 4 1 mg/L as CaCo3Total Alkalinity 2480 2480 < 4.001 4.00 4 4

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Analytical Method: Prep Method: N/AAmmonia SM 4500-NH3 B,C QC Batch: 63487Date Analyzed: Analyzed By: AH2009-09-11 Prep Batch: 54190 Sample Preparation: 2009-09-11 Prepared By: AH

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 6 of 78

HELSTF Diesel Spill Groundwater

1		an.	3.505						
		SDL	$_{ m MQL}$	Method					
		Based	Based	Blank				MQL	MDL
Parameter	Flag	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Ammonia-N		1.12	1.12	< 0.353	$_{ m mg/L}$	1	0.353	1	0.353

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: As, Total Analytical Method: S 6010B Prep Method: S 3010A QC Batch: 2009-09-10 63415Date Analyzed: Analyzed By: RRPrep Batch: 54109 Sample Preparation: 2009-09-10 Prepared By: KV

SDLMQL Method Based Based Blank MQLMDL Parameter Result Result Result Units Dilution SDL Flag (Unadjusted) (Unadjusted) Total Arsenic < 0.00448 < 0.0100 < 0.00448mg/L0.00448 0.01 0.00448 1

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Ba, Total Analytical Method: S 6010B Prep Method: S 3010A QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RRPrep Batch: Sample Preparation: 2009-09-10 Prepared By: KV54109

SDLMQLMethod MQLMDL Based Based Blank Parameter Flag Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) Total Barium 0.01300.0130< 0.00105 0.001050.005 0.00105 mg/L1

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Be, Total Analytical Method: S 6010B Prep Method: S 3010A QC Batch: Date Analyzed: 2009-09-10 Analyzed By: RR63415 Prep Batch: 54109 Sample Preparation: 2009-09-10 Prepared By: KV

SDLMQLMethod MQLMDL Based Based Blank Parameter Flag Result Result Result Dilution SDL(Unadjusted) Units (Unadjusted) Total Beryllium < 0.000450 < 0.00200 < 0.000450 mg/L0.0004500.002 0.00045

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: El Paso

Analysis: Bromide (IC) Analytical Method: E 300.0 Prep Method: N/A

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 7 of 78

HELSTF Diesel Spill Groundwater

QC Batch: Prep Batch:	63680 54369			Date Analyzed: Sample Preparation:		2009-09-04 2009-09-04		Analyzed By: JR Prepared By: JR		
		$_{ m Based}^{ m SDL}$	$egin{array}{l} \mathrm{MQL} \\ \mathrm{Based} \end{array}$	$egin{array}{l} ext{Method} \ ext{Blank} \end{array}$				MQL	MDL	
Parameter	Flag	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)	
Bromide	U	< 0.197	<1.35	< 0.197	$_{ m mg/L}$	5	0.197	0.27	0.0394	

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Ca, Total S 3010A Analysis: Analytical Method: S 6010B Prep Method: QC Batch: 63546 Date Analyzed: 2009-09-15 Analyzed By: RRPrep Batch: 54109 Sample Preparation: 2009-09-10 Prepared By: KV

SDLMQLMethod Based Based Blank MQLMDL Parameter Flag Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) 135 Total Calcium 135 < 1.17mg/L10 1.17 0.117 1

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Cd, Total Analytical Method: S 6010B Prep Method: S 3010A QC Batch: Analyzed By: 63415 Date Analyzed: 2009-09-10 RRPrep Batch: Sample Preparation: 541092009-09-10 Prepared By: KV SDLMQLMethod

Based Based Blank MQLMDL Parameter Flag Result Result ResultUnits Dilution SDL(Unadjusted) (Unadjusted) Total Cadmium < 0.000303 < 0.00200 < 0.000303 0.0003030.0020.000303mg/L

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: El Paso

Analysis: Chloride (IC) Analytical Method: E 300.0 Prep Method: N/AQC Batch: 63680 Date Analyzed: 2009-09-04 Analyzed By: JRPrep Batch: Sample Preparation: Prepared By: JR54369 2009-09-04

SDLMQLMethod Based Based Blank MQL MDLParameter SDLFlag Result Result Result Units Dilution (Unadjusted) (Unadjusted) Chloride 532 532 < 32.0mg/L50 32.0 1.22 0.6404

Sample: 209322 - HLSF-0154-HCF-005-0909

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 8 of 78

HELSTF Diesel Spill Groundwater

Laboratory: El Paso

Analytical Method: Analysis: Chromium, Hexavalent SM 3500-Cr B Prep Method: N/AQC Batch: Date Analyzed: 2009-09-04 Analyzed By: JR63337 Prep Batch: 54061 Sample Preparation: 2009-09-04 Prepared By: JR

 $\operatorname{SDL} \qquad \operatorname{MQL} \qquad \operatorname{Method}$

Based Based Blank MQL MDL Parameter Flag Result Result ResultUnits Dilution SDL (Unadjusted) (Unadjusted) Hexavalent Chromium 0.06000.0600< 0.00594mg/L0.005940.01 0.005941

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Co, Total Analytical Method: S 6010B Prep Method: S 3010A QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RRPrep Batch: 54109 Sample Preparation: 2009-09-10 Prepared By: KV

> SDL MQL Method Based Blank

MQLMDLParameter Flag Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) Total Cobalt < 0.000822 < 0.00200 < 0.000822 mg/L0.0008220.0020.000822

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analytical Method: Prep Method: Analysis: Cr, Dissolved S 6010B S 3005A QC Batch: 63462 Date Analyzed: 2009-09-11 Analyzed By: RRPrep Batch: 54154Sample Preparation: 2009-09-11 Prepared By: KV

SDL MQL Method Based Based Blank

MQLMDL SDLParameter Flag Result Result Result Units Dilution (Unadjusted) (Unadjusted) Dissolved Chromium 0.003000.003000.000583 < 0.000583 mg/L0.0005830.001

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Cr, Total Analytical Method: Prep Method: S 3010A S 6010B QC Batch: 63415Date Analyzed: 2009-09-10 Analyzed By: RRPrep Batch: 54109 Sample Preparation: 2009-09-10 Prepared By: KV

SDL MQL Method

			Blank				MQL	MDL
Parameter Fla	g Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Total Chromium U	< 0.000583	< 0.00500	< 0.000583	$\mathrm{mg/L}$	1	0.000583	0.005	0.000583

MOT

MIN

HELSTF Diesel Spill Groundwater

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Cu, Total Analytical Method: S 6010B Prep Method: S 3010A Date Analyzed: QC Batch: 63415 2009-09-10 Analyzed By: RRPrep Batch: 54109 Sample Preparation: 2009-09-10 Prepared By: KV

 SDL MQL Method

Blank MQLMDLBased Based Dilution Parameter Flag Result Result Result Units SDL(Unadjusted) (Unadjusted) Total Copper < 0.000843 < 0.00500 < 0.000843 mg/L 0.0008430.0050.000843

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Explosives (8330) Analytical Method: S 8330-C18 Prep Method: S 3535A QC Batch: 63426Date Analyzed: 2009-09-10 Analyzed By: DSPrep Batch: Sample Preparation: DS541382009-09-09 Prepared By:

		SDL	MQL	Method					
		Based	Based	Blank				MQL	MDL
Parameter	Flag	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
HMX	U	< 2.46	<10.0	< 2.46	$\mu \mathrm{g/L}$	20	2.46	0.5	0.123
RDX		15.7	15.7	< 5.96	$\mu { m g/L}$	20	5.96	0.5	0.298
1,3,5-Trinitrobenzene	U	< 6.78	<10.0	< 6.78	$\mu { m g/L}$	20	6.78	0.5	0.339
1,3-Dinitrobenzene	U	< 7.78	<10.0	< 7.78	$\mu { m g/L}$	20	7.78	0.5	0.389
Nitrobenzene		183	183	< 7.58	$\mu { m g/L}$	20	7.58	0.5	0.379
Tetryl	U	< 8.26	<10.0	< 8.26	$\mu { m g/L}$	20	8.26	0.5	0.413
TNT	U	< 9.28	<10.0	< 9.28	$\mu { m g/L}$	20	9.28	0.5	0.464
4-Amino-DNT	U	< 6.38	<10.0	< 6.38	$\mu { m g/L}$	20	6.38	0.5	0.319
2-Amino-DNT	U	< 7.82	<10.0	< 7.82	$\mu { m g}/{ m L}$	20	7.82	0.5	0.391
2,6-DNT	U	< 6.46	<10.0	< 6.46	$\mu { m g/L}$	20	6.46	0.5	0.323
2,4-DNT	U	< 7.32	<10.0	< 7.32	$\mu { m g/L}$	20	7.32	0.5	0.366
2-NT	U	< 7.58	<10.0	< 7.58	$\mu { m g/L}$	20	7.58	0.5	0.379
4-NT	U	< 7.96	<10.0	< 7.96	$\mu \mathrm{g}/\mathrm{L}$	20	7.96	0.5	0.398
3-NT		60.4	60.4	< 6.92	$\mu \mathrm{g}/\mathrm{L}$	20	6.92	0.5	0.346

					Spike	$\operatorname{Percent}$	$\operatorname{Recovery}$
$\mathbf{Surrogate}$	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
1,2-Dinitrobenzene	1	69.1	$\mu { m g/L}$	20	2.50	2764	19.8 - 160

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analytical Method: Prep Method: S 3010A Analysis: Fe, Total S 6010B QC Batch: 63415Date Analyzed: 2009-09-10 Analyzed By: RRPrep Batch: 54109Sample Preparation: 2009-09-10 Prepared By: KV

¹ High surrogate recovery due to peak interference.

Report Date: September 22, 2009 Work Order: 9090810

HELSTF Diesel Spill Groundwater

Page Number: 10 of 78

		SDL	$_{ m MQL}$	Method					
		Based	Based	Blank				MQL	MDL
Parameter	Flag	Result	Result	Result	Units	$\operatorname{Dilution}$	SDL	(Unadjusted)	(Unadjusted)
Total Iron		2.86	2.86	< 0.000872	mg/L	1	0.000872	0.01	0.000872

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: El Paso

Analysis: Fluoride (IC) Analytical Method: E 300.0 Prep Method: N/AQC Batch: 63680 Date Analyzed: 2009-09-04 Analyzed By: JRPrep Batch: 54369 Sample Preparation: Prepared By: JR2009-09-04 SDLMQLMethod Based Based Blank MQLMDL Parameter Result Units Dilution SDLFlag Result Result (Unadjusted) (Unadjusted)

mg/L

0.217

5

0.17

0.0434

< 0.217

Sample: 209322 - HLSF-0154-HCF-005-0909

< 0.217

< 0.850

Laboratory: Lubbock

Fluoride

N/AAnalysis: Hg, Total Analytical Method: S 7470A Prep Method: QC Batch: 63372 TPDate Analyzed: 2009-09-09 Analyzed By: Prep Batch: Sample Preparation: 2009-09-09 Prepared By: TP 54088

SDLMQL Method MQLMDL Based Based Blank Parameter Flag Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) Total Mercury < 0.0000329 < 0.000200 < 0.0000329 0.00003290.0002 3.29e-05mg/L

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: K, Total Analytical Method: S 6010B Prep Method: S 3010A QC Batch: 63546 Date Analyzed: 2009-09-15 Analyzed By: RRPrep Batch: 54109 Sample Preparation: 2009-09-10 Prepared By: KV

SDLMQLMethod MQLMDL Based Based Blank Parameter Flag Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) Total Potassium 97.197.1 < 0.172mg/L0.172 0.172

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Mg, Total Analytical Method: S 6010B Prep Method: S 3010A

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 11 of 78 HELSTF Diesel Spill Groundwater

QC Batch: Prep Batch:	63546 54109			Analyzed: le Preparati		9-09-15 9-09-10		Analyzed E Prepared B		
			SDL	MQL	Method					
			Based	Based	Blank				MQL	MDL
Parameter		Flag	Result	Result	Result	Units	$\operatorname{Dilution}$	SDL	(Unadjusted)	(Unadjusted)
Total Magne	sium		344	344	< 1.60	mg/L	10	1.60	1	0.16

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory:	$\operatorname{Lubbock}$								
Analysis:	Mn, Total		An	alytical Metho	od: S	6010B		Prep Metho	od: S 3010A
QC Batch:	63415		Da	te Analyzed:	2	009-09-10		Analyzed B	y: RR
Prep Batch:	54109		Sar	nple Preparat	ion: 2	009-09-10		Prepared B	y: KV
		SDL	$_{ m MQL}$	Method					
		Based	Based	Blank				MQL	MDL
Parameter	Flag	Result	Result	Result	Units	$\operatorname{Dilution}$	SDL	(Unadjusted)	(Unadjusted)
Total Manga	nese	0.103	0.103	< 0.000305	$\mathrm{mg/L}$	1	0.000305	0.0025	0.000305

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubboo	$_{ m ck}$								
Analysis: Mo, To	$_{ m tal}$		Analytic	al Method:	S 601	0B		Prep Metho	od: S 3010A
QC Batch: 63415			Date An	ıalyzed:	2009-	09-10		Analyzed B	y: RR
Prep Batch: 54109			Sample	Preparation	: 2009-	09-10		Prepared B	y: KV
		SDL	$_{ m MQL}$	Method					
		Based	Based	Blank				MQL	MDL
Parameter	Flag	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Total Molybdenum	U	< 0.00119	< 0.0100	< 0.00119	mg/L	1	0.00119	0.01	0.00119

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Na, Total 63546 54109		Dat	dytical Meth e Analyzed: aple Prepara	20	6010B 009-09-15 009-09-10		Prep Meth Analyzed E Prepared E	By: RR
		SDL	MQL	Method					
		Based	Based	Blank				MQL	MDL
Parameter	Flag	Result	Result	Result	Units	$\operatorname{Dilution}$	SDL	(Unadjusted)	(Unadjusted)
Total Sodium	ı	1860	1860	< 5.00	mg/L	100	5.00	1	0.05

Sample: 209322 - HLSF-0154-HCF-005-0909

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 12 of 78

HELSTF Diesel Spill Groundwater

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Ni, Total 63415 54109		Da	nalytical Metl te Analyzed: mple Prepara	4	S 6010B 2009-09-10 2009-09-10		Prep Metho Analyzed E Prepared B	By: RR
		SDL	MQL	Method					
		Based	Based	Blank				MQL	MDL
Parameter	Flag	Result	Result	Result	Units	$\operatorname{Dilution}$	SDL	(Unadjusted)	(Unadjusted)
Total Nickel		0.0850	0.0850	< 0.00121	m mg/L	1	0.00121	0.005	0.00121

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Nitrate and Nitrite as N Analytical Method: SM 4500-NO3 E Prep Method: N/AQC Batch: 63681 Date Analyzed: 2009-09-17 Analyzed By: KVPrep Batch: 54370Sample Preparation: 2009-09-17 Prepared By: KV

SDLMQL Method MQLMDLBased Based Blank Flag Parameter Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) Nitrate and Nitrite as N 0.141< 0.200 < 0.0700 mg/L0.0700 0.1 0.035

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: El Paso

Analysis: O/G Analytical Method: E 1664 Prep Method: N/AQC Batch: 63805 Date Analyzed: 2009-09-21 Analyzed By: MDPrep Batch: 54472Sample Preparation: 2009-09-22 Prepared By: MD

SDLMQLMethod Based Based Blank MQLMDLSDL Parameter Flag Result Result Result Units Dilution (Unadjusted) (Unadjusted) 3.60 Oil and Grease 195 195 < 3.60mg/L5 3.6

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Prep Method: Analysis: P. Total Analytical Method: S 3010A S 6010B QC Batch: 63415Date Analyzed: 2009-09-10 Analyzed By: RRPrep Batch: 54109 Sample Preparation: 2009-09-10 Prepared By: KV

SDL MethodMQL Based Based Blank MQLMDLParameter Flag Result Result Result Units Dilution SDL (Unadjusted) (Unadjusted) Total Phosphorous 0.0370 0.0370< 0.00289 mg/L0.002890.0250.00289

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 13 of 78

HELSTF Diesel Spill Groundwater

Laboratory: Lubbock

Analysis: Pb. Total Analytical Method: S 6010B Prep Method: S 3010A QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RRPrep Batch: 54109 Sample Preparation: 2009-09-10 Prepared By: KV

 SDL MQL Method

Blank MQLBased Based MDL Dilution Parameter Result Result Result Units SDL(Unadjusted) Flag (Unadjusted) Total Lead < 0.00326 < 0.00500 < 0.00326 mg/L 0.00326 0.0050.00326

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: El Paso

Analysis: рΗ Analytical Method: SM 4500-H+Prep Method: N/AQC Batch: JG63344 Date Analyzed: 2009-09-04 Analyzed By: Prep Batch: 54067 Sample Preparation: 2009-09-04 Prepared By: JR

RL

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Sb. Total Analytical Method: S 6010B Prep Method: S 3010A QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RRPrep Batch: 54109 Sample Preparation: 2009-09-10 Prepared By: KV

SDL MQL Method Based Based Blank

Based Based Blank MQLMDL Flag SDLParameter Result Result Result Units Dilution (Unadjusted) (Unadjusted) 0.02 Total Antimony < 0.00440< 0.0200< 0.00440mg/L0.004400.0044

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Se, Total Analytical Method: S 6010B Prep Method: S 3010A QC Batch: 63415Date Analyzed: 2009-09-10 Analyzed By: RRPrep Batch: Sample Preparation: KV541092009-09-10 Prepared By:

SDL MQL Method Based Based Blank

		Based	Based	Blank				MQL	MDL
Parameter	Flag	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Total Selenium	U	< 0.00508	< 0.0200	< 0.00508	$\mathrm{mg/L}$	1	0.00508	0.02	0.00508

MOT

MINI

HELSTF Diesel Spill Groundwater

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock Semivolatiles Analysis: Analytical Method: S 8270CPrep Method: S 3510C QC Batch: Analyzed By: 63393Date Analyzed: 2009-09-10 MNPrep Batch: 54112 Sample Preparation: 2009-09-08 Prepared By: MN

		SDL	MQL	Method				
		\mathbf{Based}	Based	Blank			MQL	MDL
Parameter	Flag	Result	Result	Result Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Pyridine	U	< 0.000560	< 0.00461	$< 0.000560 \mathrm{mg/L}$	0.922	0.000560	0.005	0.000608
N-Nitrosodimethylamine	U	< 0.000509	< 0.00461	$< 0.000509 \mathrm{mg/L}$	0.922	0.000509	0.005	0.000552
2-Picoline	U	< 0.000376	< 0.00461	$< 0.000376 \mathrm{mg/L}$	0.922	0.000376	0.005	0.000408
Methyl methanesulfonate	U	< 0.000323	< 0.00461	< 0.000323 mg/L	0.922	0.000323	0.005	0.00035
Ethyl methanesulfonate	U	< 0.000413	< 0.00461	<0.000413 mg/L	0.922	0.000413	0.005	0.000448
Phenol	U	< 0.000469	< 0.00461	$< 0.000469 \mathrm{mg/L}$	0.922	0.000469	0.005	0.000509
Aniline	U	< 0.000637	< 0.00461	$< 0.000637 \mathrm{mg/L}$	0.922	0.000637	0.005	0.000691
bis(2-chloroethyl)ether	U	< 0.000406	< 0.00461	< 0.000406 mg/L	0.922	0.000406	0.005	0.00044
2-Chlorophenol	U	< 0.000495	< 0.00461	< 0.000495 mg/L	0.922	0.000495	0.005	0.000537
1,3-Dichlorobenzene (meta)	U	< 0.000407	< 0.00461	$< 0.000407 \mathrm{mg/L}$	0.922	0.000407	0.005	0.000441
1,4-Dichlorobenzene (para)	U	< 0.000406	< 0.00461	< 0.000406 mg/L	0.922	0.000406	0.005	0.00044
Benzyl alcohol	U	< 0.000496	< 0.00461	< 0.000496 mg/L	0.922	0.000496	0.005	0.000538
1,2-Dichlorobenzene (ortho)	U	< 0.000408	< 0.00461	< 0.000408 mg/L	0.922	0.000408	0.005	0.000443
2-Methylphenol	U	< 0.000669	< 0.00461	$< 0.000669 \mathrm{mg/L}$	0.922	0.000669	0.005	0.000726
${ m bis}(2{ ext{-chloroisopropyl}}){ m ether}$	U	< 0.000464	< 0.00461	< 0.000464 mg/L	0.922	0.000464	0.005	0.000503
4-Methylphenol / 3-Methylphenol	U	< 0.000472	< 0.00461	< 0.000472 mg/L	0.922	0.000472	0.005	0.000512
N-Nitrosodi-n-propylamine	U	< 0.000675	< 0.00461	< 0.000675 mg/L	0.922	0.000675	0.005	0.000732
${ m Hexachloroethane}$	U	< 0.000467	< 0.00461	$< 0.000467 \mathrm{mg/L}$	0.922	0.000467	0.005	0.000507
$egin{array}{c} { m Acetophenone} \end{array}$	U	< 0.000391	< 0.00461	< 0.000391 mg/L	0.922	0.000391	0.005	0.000424
Nitrobenzene	U	< 0.000429	< 0.00461	< 0.000429 mg/L	0.922	0.000429	0.005	0.000465
N-Nitrosopiperidine	U	< 0.000408	< 0.00461	< 0.000408 mg/L	0.922	0.000408	0.005	0.000443
Is ophorone	U	< 0.000571	< 0.00461	< 0.000571 mg/L	0.922	0.000571	0.005	0.000619
2-Nitrophenol	U	< 0.000374	< 0.00461	< 0.000374 mg/L	0.922	0.000374	0.005	0.000406
2,4-Dimethylphenol	U	< 0.000440	< 0.00461	< 0.000440 mg/L	0.922	0.000440	0.005	0.000477
bis(2-chloroethoxy) methane	U	< 0.000398	< 0.00461	< 0.000398 mg/L	0.922	0.000398	0.005	0.000432
2,4-Dichlorophenol	U	< 0.000369	< 0.00461	$< 0.000369 \mathrm{mg/L}$	0.922	0.000369	0.005	0.0004
1,2,4-Trichlorobenzene	U	< 0.000372	< 0.00461	< 0.000372 mg/L	0.922	0.000372	0.005	0.000404
Benzoic acid	U	< 0.00150	< 0.00461	$< 0.00150 \mathrm{mg/L}$	0.922	0.00150	0.005	0.00163
Naphthalene	2	0.110	0.110	<0.000451 mg/L	0.922	0.000451	0.005	0.000489
a,a-Dimethylphenethylamine	U	< 0.00119	< 0.00461	$< 0.00119 \mathrm{mg/L}$	0.922	0.00119	0.005	0.00129
4-Chloroaniline	U	< 0.000348	< 0.00461	< 0.000348 mg/L	0.922	0.000348	0.005	0.000378
2,6-Dichlorophenol	U	< 0.000446	< 0.00922	< 0.000446 mg/L	0.922	0.000446	0.01	0.000484
${ m Hexachlorobutadiene}$	U	< 0.000477	< 0.00461	$< 0.000477 \mathrm{mg/L}$	0.922	0.000477	0.005	0.000517
N-Nitroso-di-n-butylamine	U	< 0.000605	< 0.00461	< 0.000605 mg/L	0.922	0.000605	0.005	0.000656
4-Chloro-3-methylphenol	U	< 0.000481	< 0.00461	< 0.000481 mg/L	0.922	0.000481	0.005	0.000522
2-Methylnaphthalene	3	0.503	0.503	< 0.000390 mg/L	0.922	0.000390	0.005	0.000423
$1 ext{-} ext{Methylnaphthalene}$	4	$\boldsymbol{0.452}$	$\boldsymbol{0.452}$	< 0.000456 mg/L	0.922	0.000456	0.005	0.000495
1,2,4,5-Tetrachlorobenzene	U	< 0.000564	< 0.00461	< 0.000564 mg/L	0.922	0.000564	0.005	0.000612

 $continued \dots$

²Estimated concentration value greater than standard range.

 $^{^3\,\}mathrm{Estimated}$ concentration value greater than standard range.

⁴Estimated concentration value greater than standard range.

sample 209322 continued . . .

		SDL	MQL	Method				
		Based	Based	Blank			MQL	MDL
Parameter	Flag	Result	Result	Result Unit	s Dilution	SDL	(Unadjusted)	(Unadjusted)
Hexachlorocyclopentadiene	U	< 0.000514	< 0.00461	< 0.000514 mg/s		0.000514	0.005	0.000558
2,4,6-Trichlorophenol	U			<0.000732 mg/		0.000732		0.000794
2,4,5-Trichlorophenol	U			< 0.000769 mg/s		0.000769		0.000834
2-Chloronaphthalene	U			< 0.000384 mg/s		0.000384		0.000416
1-Chloronaphthalene	U			< 0.000439 mg/s		0.000439		0.000476
2-Nitroaniline	U			< 0.000701 mg/s		0.000701	0.005	0.00076
Dimethylphthalate	U			< 0.000593 mg/s		0.000593		0.000643
Acenaphthylene	U			< 0.000540 mg/s		0.000540		0.000586
2,6-Dinitrotoluene	U			< 0.000590 mg/s		0.000590		0.00064
3-Nitroaniline	U			<0.000665 mg/		0.000665		0.000721
Acenaphthene				< 0.000390 mg/s		0.000390		0.000423
2,4-Dinitrophenol	U			< 0.000203 mg/s		0.000203		0.00022
Dibenzofuran		0.0603		< 0.000376 mg/s		0.000376		0.000408
Pentachlorobenzene	U			< 0.000576 mg/s		0.000526		0.000571
4-Nitrophenol	U			< 0.00170 mg/s		0.00170	0.025	0.00185
2,4-Dinitrotoluene	U			< 0.000840 mg/s		0.000840		0.000911
1-Naphthylamine	U			< 0.000634 mg/s		0.000634		0.000688
2,3,4,6-Tetrachlorophenol	U			< 0.000521 mg/s		0.000521	0.00	0.000565
2-Naphthylamine	U			< 0.000644 mg/s		0.000644		0.000699
Fluorene				$< 0.000597 \mathrm{mg/s}$		0.000597		0.000648
4-Chlorophenyl-phenylether	U			< 0.000571 mg/s		0.000571	0.005	0.000619
Diethylphthalate	U			< 0.00071 mg/s		0.000711		0.000828
4-Nitroaniline	U			$< 0.000647 \mathrm{mg/s}$		0.000647		0.000323 0.000702
Diphenylhydrazine	U			<0.000606 mg/		0.000606		0.000657
4,6-Dinitro-2-methylphenol	U			<0.00182 mg/		0.00182	0.005	0.000037
Diphenylamine	U			< 0.00182 mg/s		0.00182		0.00193 0.00044
4-Bromophenyl-phenylether	U			$< 0.000507 \mathrm{mg/s}$		0.000507		0.00044 0.00055
Phenacetin	U			< 0.000558 mg/s		0.000557 0.000558		0.000605
Hexachlorobenzene	U			< 0.000466 mg/s		0.000366		0.000506
4-Aminobiphenyl	U			<0.000486 mg/		0.000486		0.000500 0.000527
Pentachlorophenol	5 <i>U</i>			<0.000400 mg/		0.000400	0.003	0.000327 0.000435
Anthracene	U			<0.000395 mg/		0.000395		0.000435 0.000428
Pentachloronitrobenzene	U			< 0.000335 mg/s		0.000336		0.000428
Pronamide	U			<0.000370 mg/		0.000370 0.000439		0.000476
Phenanthrene	6	0.000459		<0.000439 mg/.		0.000439 0.000505		0.000470 0.000548
Di-n-butylphthalate	U			<0.000445 mg/		0.000303 0.000445		0.000348 0.000483
Fluoranthene	U			<0.000583 mg/.		0.000443 0.000583		
Benzidine	U			<0.000383 mg/.		0.000383 0.00219	$0.005 \\ 0.025$	$0.000632 \\ 0.00238$
				<0.00219 mg/.				
Pyrene p. Dimethylaminoszahonzona	U	0.0158		<0.000832 mg/3		0.000667 0.000832		0.000723
p-Dimethylaminoazobenzene	U			O/				0.000902
Butylbenzylphthalate	J			< 0.000410 mg/s		0.000410		0.000445
Benzo(a)anthracene	U			< 0.000486 mg/s		0.000486		0.000527
3,3-Dichlorobenzidine		< 0.00109	< 0.00461	$< 0.00109 \mathrm{mg}/$	0.922	0.00109	0.005	0.00118

 $continued \dots$

Page Number: 15 of 78

 $^{^5{\}rm Concentration}$ biased low. $^6{\rm Estimated}$ concentration value greater than standard range.

_		_		
sample	209322	continued		

		SDL	MQL	$\operatorname{Met} \operatorname{hod}$				
		Based	Based	Blank			MQL	MDL
Parameter	Flag	Result	Result	Result Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Chrysene	J	0.00171 <	< 0.00461	$< 0.000588 \mathrm{mg/L}$	0.922	0.000588	0.005	0.000638
bis(2-ethylhexyl)phthalate	J	0.00347 <	< 0.00461	${<}0.000517\mathrm{mg/L}$	0.922	0.000517	0.005	0.000561
${ m Di-n-octylphthalate}$	U	< 0.00107 <	< 0.00461	$< 0.00107 \mathrm{mg/L}$	0.922	0.00107	0.005	0.00116
${ m Benzo(b)}$ fluoranthene	U	< 0.000810 <	< 0.00461	${<}0.000810\:\mathrm{mg/L}$	0.922	0.000810	0.005	0.000879
$\operatorname{Benzo}(k)$ fluoranthene	U	< 0.000779 <	< 0.00461	${<}0.000779\:{\rm mg/L}$	0.922	0.000779	0.005	0.000845
7,12-Dimethylbenz(a)anthracene	U	< 0.000940 <	< 0.00461	${<}0.000940\:{\rm mg/L}$	0.922	0.000940	0.005	0.00102
$\mathrm{Benzo}(\mathrm{a})\mathrm{pyrene}$	U	< 0.00154	< 0.00461	< 0.00154 mg/L	0.922	0.00154	0.005	0.00167
3-Methylcholanthrene	U	< 0.000837 <	< 0.00461	${<}0.000837\mathrm{mg/L}$	0.922	0.000837	0.005	0.000908
${ m Dibenzo(a,j)}$ acridine	U	< 0.00119 <	< 0.00461	$< 0.00119 \mathrm{mg/L}$	0.922	0.00119	0.005	0.00129
Indeno(1,2,3-cd)pyrene	U	< 0.000795 <	< 0.00461	< 0.000795 mg/L	0.922	0.000795	0.005	0.000862
${ m Dibenzo(a,h)}$ anthracene	U	< 0.000746 <	< 0.00461	$< 0.000746 \; \mathrm{mg/L}$	0.922	0.000746	0.005	0.000809
$\mathrm{Benzo}(\mathrm{g,h,i})$ perylene	U	< 0.000875 <	< 0.00461	$<\!0.000875\;\mathrm{mg/L}$	0.922	0.000875	0.005	0.000949

					Spike	$\operatorname{Percent}$	$\operatorname{Recovery}$
Surrogate	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
2-Fluorophenol		0.0210	$_{ m mg/L}$	0.922	0.0800	26	10 - 53.1
${ m Phenol-d5}$		0.0160	m mg/L	0.922	0.0800	20	10 - 36.9
${ m Nitrobenzene-d5}$		0.0370	m mg/L	0.922	0.0800	46	23.8 - 108
2-Fluorobiphenyl		0.0493	$\mathrm{mg/L}$	0.922	0.0800	62	15.9 - 127
2,4,6-Tribromophenol		0.0732	m mg/L	0.922	0.0800	92	10 - 123
${ m Terphenyl-d14}$		0.0494	m mg/L	0.922	0.0800	62	17.2 - 160

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: El Paso Analysis: SO4 (IC) QC Batch: 63680

54369

Prep Batch:

Analytical Method: E 300.0
Date Analyzed: 2009-09-04
Sample Preparation: 2009-09-04

Prep Method: N/A
Analyzed By: JR
Prepared By: JR

Page Number: 16 of 78

SDLMQLMethodMQLBased Based Blank MDLParameter Flag Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) Sulfate 2430 2430 <25.2 mg/L50 25.2 1.33 0.5038

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: El Paso

Analysis: TDS Analytical Method: SM 2540CPrep Method: N/AQC Batch: 63474Date Analyzed: 2009-09-08 Analyzed By: MDPrep Batch: Sample Preparation: 2009-09-08 Prepared By: 54174MD

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 17 of 78

HELSTF Diesel Spill Groundwater

		SDL	MQL	Method					
		Based	Based	Blank				MQL	MDL
Parameter	Flag	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Total Dissolved Solids		6630	6630	< 5.00	$_{ m mg/L}$	1	5.00		5

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: TKN Analytical Method: E 351.3 Prep Method: N/AQC Batch: 2009-09-13 63531 Date Analyzed: Analyzed By: AHPrep Batch: Sample Preparation: Prepared By: KV54234

SDL MQL Method

Based Based Blank MQLMDL Result SDLParameter Flag Result Result Units Dilution (Unadjusted) (Unadjusted) Total Kjeldahl Nitrogen - N 3.92<10.0 < 2.45mg/L2.4510 2.45 1

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Tl, Total Analytical Method: S 6010B Prep Method: S 3010A QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RRPrep Batch: Sample Preparation: 2009-09-10 Prepared By: KV54109

SDLMQL Method MQLMDL Based Based Blank Parameter Flag Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) Total Thallium < 0.00488 < 0.05000.004880.05 0.00488 < 0.00488 mg/L1

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: TOC Analytical Method: SM 5310C Prep Method: N/A QC Batch: 63678 Date Analyzed: 2009-09-17 Analyzed By: KVPrep Batch: 54367 Sample Preparation: 2009-09-17 Prepared By: KV

SDL MQL Method MQL MDL Based Based Blank Parameter Result Result Result Dilution SDL(Unadjusted) Flag Units (Unadjusted) Total Organic Carbon 22.122.1< 0.401mg/L0.4010.401

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Total Cyanide Analytical Method: SM 4500-CN C,E Prep Method: N/A

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 18 of 78

HELSTF Diesel Spill Groundwater

QC Batch: 63422 Date Analyzed: 2009-09-10 Analyzed By: AHPrep Batch: Sample Preparation: Prepared By: 54136 2009-09-10 AH

> SDLMQLMethod

Based Based Blank MQLMDL Parameter Flag Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) Total Cyanide < 0.0110 < 0.0150< 0.0110mg/L0.0110 0.015 0.011

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: TPH DRO Analytical Method: Mod. 8015B Prep Method: N/A

QC Batch: 63359 Date Analyzed: 2009-09-08 Analyzed By: Prep Batch: 54081 Sample Preparation: 2009-09-08 Prepared By:

> SDLMQL Method

Based Based Blank MQLMDL Parameter Flag Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) $\overline{\mathrm{DRO}}$ 18.518.5 < 0.876mg/L1 0.8765 0.876

Spike Percent Recovery Surrogate Flag Result Units Dilution Limits Amount Recovery n-Triacontane 14.7mg/L10.0 147 57.3 - 151

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: TPH GRO Analytical Method: S 8015B Prep Method: S 5030B QC Batch: 63348Date Analyzed: 2009-09-08 Analyzed By: MTPrep Batch: Sample Preparation: Prepared By: 54070 2009-09-08 MT

SDLMQLMethod Based Based Blank

MDLMQL Parameter Flag Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) GRO 1.16 1.16 < 0.152mg/L0.1520.20.152

Spike Percent Recovery Surrogate Flag Result Units Dilution Amount Recovery Limits Trifluorotoluene (TFT) 0.0983mg/L0.10098 70.8 - 112 1 7 80 - 109 4-Bromofluorobenzene (4-BFB) 0.1151 0.100115 mg/L

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: V, Total Analytical Method: S 6010B Prep Method: S 3010A

⁷ High surrogate recovery due to peak interference.

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 19 of 78

HELSTF Diesel Spill Groundwater

QC Batch:	63415 54109			Analyzed: le Preparation		-09-10 -09-10		Analyzed B Prepared B	•
•		SDL	MQL	Method					
		Based	Based	Blank				MQL	MDL
Parameter	Flag	Result	Result	Result	Units	Dilution	SDL	(Unadjusted)	(Unadjusted)
Total Vanadii	um	0.00700	0.00700	< 0.000426	mg/L	1	0.000426	0.005	0.000426

Sample: 209322 - HLSF-0154-HCF-005-0909

Laboratory: Lubbock

Analysis: Zn, Total Analytical Method: S_{6010B} Prep Method: S 3010A QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RRPrep Batch: 54109 Sample Preparation: 2009-09-10 Prepared By: KV

SDLMQLMethod Based Based Blank MQLMDLParameter Flag Result Result Result Units Dilution SDL(Unadjusted) (Unadjusted) Total Zinc 0.0004650.005 < 0.000465 < 0.00500 < 0.000465 mg/L0.0004651

Method Blank (1)

QC Batch: 63337 Date Analyzed: 2009-09-04 Analyzed By: JR
Prep Batch: 54061 QC Preparation: 2009-09-04 Prepared By: JR

Method Blank (1)

QC Batch: 63348 Date Analyzed: 2009-09-08 Analyzed By: MT Prep Batch: 54070 QC Preparation: 2009-09-08 Prepared By: MT

					эріке	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${ m Amount}$	Recovery	Limits
Trifluorotoluene (TFT)		0.102	m mg/L	1	0.100	102	70.8 - 112
4-Bromofluorobenzene (4-BFB)		0.0996	${ m mg/L}$	1	0.100	100	80 - 109

Work Order: 9090810 HELSTF Diesel Spill Groundwater

Page Number: 20 of 78

Method Blank (1)

QC Batch: 63359 Date Analyzed: 2009-09-08 Analyzed By: Prep Batch: 54081 QC Preparation: 2009-09-08 Prepared By:

				Reporting
Parameter	Flag	Result	Units	Limits
DRO		< 0.876	m mg/L	0.876

					Spike	Percent	Recovery
$\mathbf{Surrogate}$	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
n-Triacontane		8.45	$_{ m mg/L}$	1	10.0	84	57.3 - 151

Method Blank (1)

QC Batch: 63372 Date Analyzed: 2009-09-09 Analyzed By: TP
Prep Batch: 54088 QC Preparation: 2009-09-09 Prepared By: TP

				$\operatorname{Reporting}$
Parameter	Flag	Result	Units	Limits
Total Mercury		< 0.0000329	$_{ m mg/L}$	3.29e-05

Method Blank (1)

QC Batch: 63393 Date Analyzed: 2009-09-10 Analyzed By: MN
Prep Batch: 54112 QC Preparation: 2009-09-08 Prepared By: MN

				$\operatorname{Reporting}$
Parameter	Flag	Result	Units	Limits
Pyridine		< 0.000608	m mg/L	0.000608
N-Nitrosodimethylamine		< 0.000552	m mg/L	0.000552
2-Picoline		< 0.000408	$\mathrm{mg/L}$	0.000408
Methyl methanesulfonate		< 0.000350	m mg/L	0.00035
Ethyl methanesulfonate		< 0.000448	$\mathrm{mg/L}$	0.000448
Phenol		< 0.000509	$\mathrm{mg/L}$	0.000509
Aniline		< 0.000691	$\mathrm{mg/L}$	0.000691
${ m bis}(2{ m -chloroet}{ m hyl}){ m et}{ m her}$		< 0.000440	$\mathrm{mg/L}$	0.00044
2-Chlorophenol		< 0.000537	m mg/L	0.000537
1,3-Dichlorobenzene (meta)		< 0.000441	m mg/L	0.000441
1,4-Dichlorobenzene (para)		< 0.000440	m mg/L	0.00044
Benzyl alcohol		< 0.000538	m mg/L	0.000538
1,2-Dichlorobenzene (ortho)		< 0.000443	m mg/L	0.000443
2-Methylphenol		< 0.000726	m mg/L	0.000726
${ m bis}(2{ m -chloroisopropyl}){ m ether}$		< 0.000503	m mg/L	0.000503
4-Methylphenol / 3-Methylphenol		< 0.000512	m mg/L	0.000512
N-Nitrosodi-n-propylamine		< 0.000732	m mg/L	0.000732
$\operatorname{Hexachloroethane}$		< 0.000507	m mg/L	0.000507
$egin{array}{c} Acetophenone \end{array}$		0.000600	$\mathrm{mg/L}$	0.000424

 $continued \dots$

method blank continued . . .

meenoa mann commuca				Reporting
Parameter	Flag	Result	Units	Limits
Nitrobenzene		< 0.000465	m mg/L	0.000465
N-Nitrosopiperidine		< 0.000443	m mg/L	0.000443
Isophorone		< 0.000619	m mg/L	0.000619
2-Nitrophenol		< 0.000406	m mg/L	0.000406
2,4-Dimethylphenol		< 0.000477	m mg/L	0.000477
bis(2-chloroethoxy) methane		< 0.000432	m mg/L	0.000432
2,4-Dichlorophenol		< 0.000400	m mg/L	0.0004
1,2,4-Trichlorobenzene		< 0.000404	m mg/L	0.000404
Benzoic acid		< 0.00163	m mg/L	0.00163
Naphthalene		< 0.000489	m mg/L	0.000489
a,a-Dimethylphenethylamine		< 0.00129	m mg/L	0.00129
4-Chloroaniline		< 0.000378	m mg/L	0.000378
2,6-Dichlorophenol		< 0.000484	m mg/L	0.000484
Hexachlorobutadiene		< 0.000517	m mg/L	0.000517
N-Nitroso-di-n-butylamine		< 0.000656	m mg/L	0.000656
4-Chloro-3-methylphenol		< 0.000522	m mg/L	0.000522
2-Methylnaphthalene		< 0.000423	m mg/L	0.000423
1-Methylnaphthalene		< 0.000495	m mg/L	0.000495
1,2,4,5-Tetrachlorobenzene		< 0.000612	m mg/L	0.000612
Hexachlorocyclopentadiene		< 0.000558	m mg/L	0.000558
2,4,6-Trichlorophenol		< 0.000794	m mg/L	0.000794
2,4,5-Trichlorophenol		< 0.000834	m mg/L	0.000834
2-Chloronaphthalene		< 0.000416	m mg/L	0.000416
1-Chloronaphthalene		< 0.000476	m mg/L	0.000476
2-Nitroaniline		< 0.000760	$_{ m mg/L}$	0.00076
Dimethylphthalate		< 0.000643	$_{ m mg/L}$	0.000643
Acenaphthylene		< 0.000586	$_{ m mg/L}$	0.000586
2,6-Dinitrotoluene		< 0.000640	m mg/L	0.00064
3-Nitroaniline		< 0.000721	m mg/L	0.000721
Acenaphthene		< 0.000423	m mg/L	0.000423
2,4-Dinitrophenol		< 0.000220	m mg/L	0.00022
Dibenzofuran		< 0.000408	m mg/L	0.000408
Pentachlorobenzene		< 0.000571	m mg/L	0.000571
4-Nitrophenol		< 0.00185	m mg/L	0.00185
2,4-Dinitrotoluene		< 0.000911	m mg/L	0.000911
1-Naphthylamine		< 0.000688	m mg/L	0.000688
2,3,4,6-Tetrachlorophenol		< 0.000565	m mg/L	0.000565
2-Naphthylamine		< 0.000699	m mg/L	0.000699
Fluorene		< 0.000648	m mg/L	0.000648
4-Chlorophenyl-phenylether		< 0.000619	m mg/L	0.000619
Diet hylphthalate		< 0.000828	m mg/L	0.000828
4-Nitroaniline		< 0.000702	m mg/L	0.000702
Diphenylhydrazine		< 0.000657	m mg/L	0.000657
4,6-Dinitro-2-methylphenol		< 0.00198	$\frac{\mathrm{mg}/\mathrm{L}}{\mathrm{mg}/\mathrm{L}}$	0.00198
Diphenylamine		< 0.00138	$\frac{\mathrm{mg}/\mathrm{L}}{\mathrm{mg}/\mathrm{L}}$	0.00133
4-Bromophenyl-phenylether		< 0.000440 < 0.000550	$\frac{\mathrm{mg}/\mathrm{L}}{\mathrm{mg}/\mathrm{L}}$	0.00044 0.00055
Phenacetin		< 0.000530	m mg/L	0.000605
1 Hollacoulli		~ 0.000000	ш5/ ப	0.00000

 $continued \dots$

Page Number: 21 of 78

${\it Work~Order:~9090810} \\ {\it HELSTF~Diesel~Spill~Groundwater}$

Page Number: 22 of 78

 $method\ blank\ continued\ \dots$

				Reporting
Parameter	Flag	Result	Units	Limits
Hexachlorobenzene		< 0.000506	m mg/L	0.000506
4-Aminobiphenyl		< 0.000527	m mg/L	0.000527
Pentachlorophenol		< 0.000435	m mg/L	0.000435
${ m Anthracene}$		< 0.000428	m mg/L	0.000428
Pentachloronitrobenzene		< 0.000408	m mg/L	0.000408
Pronamide		< 0.000476	m mg/L	0.000476
Phenanthrene		< 0.000548	m mg/L	0.000548
Di-n-butylphthalate		< 0.000483	m mg/L	0.000483
Fluoranthene		< 0.000632	m mg/L	0.000632
Benzidine		< 0.00238	m mg/L	0.00238
Pyrene		< 0.000723	m mg/L	0.000723
p-Dimethylaminoazobenzene		< 0.000902	m mg/L	0.000902
${\bf Butylbenzylphthalate}$		< 0.000445	m mg/L	0.000445
$\operatorname{Benzo}(\operatorname{a}) \operatorname{anthracene}$		< 0.000527	m mg/L	0.000527
3,3-Dichlorobenzidine		< 0.00118	m mg/L	0.00118
Chrysene		< 0.000638	m mg/L	0.000638
${ m bis}(2{ m -ethylhexyl}){ m phthalate}$		< 0.000561	m mg/L	0.000561
Di-n-octylphthalate		< 0.00116	m mg/L	0.00116
$\operatorname{Benzo}(b)$ fluoranthene		< 0.000879	m mg/L	0.000879
$\operatorname{Benzo}(k)$ fluoranthene		< 0.000845	m mg/L	0.000845
7,12-Dimethylbenz (a) anthracene		< 0.00102	m mg/L	0.00102
$\mathrm{Benzo}(\mathrm{a})\mathrm{pyrene}$		< 0.00167	m mg/L	0.00167
$3 ext{-Methylcholanthrene}$		< 0.000908	m mg/L	0.000908
${ m Dibenzo}({ m a,j}){ m acridine}$		< 0.00129	m mg/L	0.00129
Indeno(1,2,3-cd)pyrene		< 0.000862	m mg/L	0.000862
${ m Dibenzo(a,h)}$ anthracene		< 0.000809	m mg/L	0.000809
$\mathrm{Benzo}(\mathrm{g,h,i})\mathrm{perylene}$		< 0.000949	m mg/L	0.000949

					Spike	$\operatorname{Percent}$	Recovery
$\mathbf{Surrogate}$	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limits
2-Fluorophenol		0.0243	$\mathrm{mg/L}$	1	0.0800	30	10 - 53.1
${ m Phenol-d5}$		0.0140	${ m mg/L}$	1	0.0800	18	10 - 36.9
${ m Nitrobenzene-d5}$		0.0454	m mg/L	1	0.0800	57	23.8 - 108
2-Fluorobiphenyl		0.0489	${ m mg/L}$	1	0.0800	61	15.9 - 127
2,4,6-Tribromophenol		0.0596	${ m mg/L}$	1	0.0800	74	10 - 123
${ m Terphenyl-d14}$		0.0518	$\mathrm{mg/L}$	1	0.0800	65	17.2 - 160

Method Blank (1)

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR Prep Batch: 54109 QC Preparation: 2009-09-10 Prepared By: KV

				$\operatorname{Reporting}$
Parameter	Flag	Result	Units	Limits
Total Silver		< 0.00111	m mg/L	0.00111

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 23 of 78

HELSTF Diesel Spill Groundwater

		HEL51F Diesel Spill Groundw	ater	
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
D	DI	D 14	TT '4	Reporting
Parameter Total Aluminum	Flag	Result <0.00301	$\frac{\rm Units}{\rm mg/L}$	Limits 0.00301
Total Iraminan		(0.00501		0.00001
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
				Reporting
Parameter	Flag	Result	Units	Limits
Total Arsenic		< 0.00448	m mg/L	0.00448
Method Blank (1)		D + A 1 1 2000 00 10		
QC Batch: 63415 Prep Batch: 54109		Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10		Analyzed By: RR Prepared By: KV
				Reporting
Parameter	Flag	Result	Units	Limits
Total Barium		< 0.00105	m mg/L	0.00105
Method Blank (1)				
QC Batch: 63415 Prep Batch: 54109		Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10		Analyzed By: RR Prepared By: KV
				Reporting
Parameter	Flag	Result	Units	Limits
Total Beryllium		< 0.000450	m mg/L	0.00045
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
Danamatan	171	D14	TT:+-	Reporting
Parameter Total Cadmium	Flag	Result < 0.000303	$\frac{\rm Units}{\rm mg/L}$	Limits 0.000303
Total Caumium		<u> </u>	шg/ L	0.000303

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 24 of 78

HELSTF Diesel Spill Groundwater

		HELSTF Diesel Spill Groundw	ater	
Method Blank (1)				
QC Batch: 63415 Prep Batch: 54109		Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10		Analyzed By: RR Prepared By: KV
D	DI	D 1	TT **	Reporting
Parameter Total Cobalt	Flag	Result <0.000822	Units	Limits
Total Cobalt		<0.000822	m mg/L	0.000822
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
_				Reporting
Parameter	Flag	Result	Units	Limits
Total Chromium		< 0.000583	m mg/L	0.000583
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
Parameter	Flag	Result	Units	$egin{array}{c} ext{Reporting} \ ext{Limits} \end{array}$
Total Copper	Flag	<0.000843	mg/L	0.000843
		X0.000023		01000010
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
Parameter	Flag	Result	Units	$egin{array}{c} ext{Reporting} \ ext{Limits} \end{array}$
Total Iron	riag	<0.000872	mg/L	0.000872
Total Holl		V0.000012	mg/ L	0.000012
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
Parameter	Flag	Result	Units	$egin{array}{c} ext{Reporting} \ ext{Limits} \end{array}$
		2000420	2 222 00	

< 0.000305

mg/L

0.000305

Total Manganese

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 25 of 78

HELSTF Diesel Spill Groundwater

		nelstr Dieserspin Groundw	ater	
Method Blank (1)				
QC Batch: 63415 Prep Batch: 54109		Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10		Analyzed By: RR Prepared By: KV
1 1 cp Daten. 94103		QC 1 reparation. 2005-05-10		r repared by. Kv
D	Di	D 1	TT **	Reporting
Parameter Total Molybdenum	Flag	Result < 0.00119	$\frac{\rm Units}{\rm mg/L}$	Limits 0.00119
100ai Woiy buchum		V0.00113	mg/ L	0.00113
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
D	F1	D 1 k	TT	Reporting
Parameter Total Nickel	Flag	Result < 0.00121	$\frac{ m Units}{ m mg/L}$	Limits 0.00121
Method Blank (1)				
` '				
QC Batch: 63415 Prep Batch: 54109		Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10		Analyzed By: RR Prepared By: KV
1 1ep Daten. 54109		QC 1 Teparation. 2009-09-10		r repared by. Kv
D	T)	D 1	TT 10	Reporting
Parameter Total Phosphorous	Flag	Result < 0.00289	$\frac{\rm Units}{\rm mg/L}$	Limits 0.00289
2000 I Hospitoro de		X3.00200		0.00200
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
D	T)	D. 14	TT *	Reporting
Parameter Total Lead	Flag	Result < 0.00326	$\frac{\rm Units}{\rm mg/L}$	$\frac{\text{Limits}}{0.00326}$
Total Bead		(0.00920	mg/ L	0.00520
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
Parameter	Flag	Result	Units	$\begin{array}{c} \text{Reporting} \\ \text{Limits} \end{array}$
	1 100 8	2000 air	5 11105	131111103

< 0.00440

mg/L

0.0044

Total Antimony

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 26 of 78

HELSTF Diesel Spill Groundwater

		HELSTF Diesel Spill Groundw	atel	
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
Parameter	Flag	Result	Units	$egin{array}{c} ext{Reporting} \ ext{Limits} \end{array}$
Total Selenium	Fiag	<0.00508	$\frac{\rm mg/L}$	0.00508
			<u> </u>	
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
D	T)	D 1	TT '.	Reporting
Parameter Total Thallium	Flag	Result <0.00488	$\frac{\rm Units}{\rm mg/L}$	Limits 0.00488
Total Thailium		\0.00 1 00	mg/ L	0.00400
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
				Reporting
Parameter	Flag	Result	Units	Limits
Total Vanadium		< 0.000426	m mg/L	0.000426
Method Blank (1)				
QC Batch: 63415		Date Analyzed: 2009-09-10		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
				Reporting
Parameter	Flag	Result	Units	Limits
Total Zinc		< 0.000465	m mg/L	0.000465
Method Blank (1)				
QC Batch: 63422		Date Analyzed: 2009-09-10		Analyzed By: AH
Prep Batch: 54136		QC Preparation: 2009-09-10		Prepared By: AH
				Reporting
Parameter	Flag	Result	${ m Units}$	Limits
Total Cyanide		< 0.0110	${ m mg/L}$	0.011

HELSTF Diesel Spill Groundwater

Work Order: 9090810 Page Number: 27 of 78

\mathbf{Method}	Blank	(1)
-------------------	-------	------------

Date Analyzed: 2009 - 09 - 10Analyzed By: DS QC Batch: 63426Prep Batch: QC Preparation: 2009-09-09 Prepared By: DS 54138

				Reporting
Parameter	Flag	Result	Units	Limits
HMX		< 0.123	$\mu \mathrm{g}/\mathrm{L}$	0.123
RDX		< 0.298	$\mu { m g}/{ m L}$	0.298
1,3,5-Trinitrobenzene		< 0.339	$\mu { m g}/{ m L}$	0.339
1,3-Dinitrobenzene		< 0.389	$\mu { m g}/{ m L}$	0.389
${ m Nitrobenzene}$		< 0.379	$\mu { m g}/{ m L}$	0.379
Tetryl		< 0.413	$\mu { m g}/{ m L}$	0.413
TNT		< 0.464	$\mu { m g}/{ m L}$	0.464
4-Amino-DNT		< 0.319	$\mu { m g}/{ m L}$	0.319
2-Amino-DNT		< 0.391	$\mu { m g}/{ m L}$	0.391
2,6-DNT		< 0.323	$\mu { m g}/{ m L}$	0.323
2,4-DNT		< 0.366	$\mu { m g}/{ m L}$	0.366
2-NT		< 0.379	$\mu { m g}/{ m L}$	0.379
4-NT		< 0.398	$\mu { m g}/{ m L}$	0.398
3-NT		< 0.346	$\mu { m g}/{ m L}$	0.346

					Spike	$\operatorname{Percent}$	Recovery
$\mathbf{Surrogate}$	Flag	Result	Units	Dilution	${ m Amount}$	Recovery	Limits
1,2-Dinitrobenzene		2.46	$\mu \mathrm{g}/\mathrm{L}$	1	2.50	98	19.8 - 160

Method Blank (1)

QC Batch: Date Analyzed: 2009-09-11 Analyzed By: RR 63462 Prep Batch: 54154 QC Preparation: 2009-09-11 Prepared By: KV

				Reporting
Parameter	Flag	Result	Units	Limits
Dissolved Chromium		< 0.000583	$\mathrm{mg/L}$	0.000583

Method Blank (1)

QC Batch: Analyzed By: MD 63474Date Analyzed: 2009-09-08 Prep Batch: 54174 QC Preparation: 2009-09-08 Prepared By: MD

				Reporting
Parameter	Flag	Result	Units	Limits
Total Dissolved Solids		< 5.00	m mg/L	5

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 28 of 78

HELSTF Diesel Spill Groundwater

		HELSTF Dies	el Spill Groundw	ater	
Method Blank (1)					
QC Batch: 63487 Prep Batch: 54190		Date Analyzed: QC Preparation:	2009-09-11 2009-09-11		Analyzed By: AH Prepared By: AH
_		_			Reporting
Parameter	Flag	Resu		Units	Limits
Ammonia-N		<0.35	03	m mg/L	0.353
Method Blank (1)					
QC Batch: 63531		Date Analyzed:	2009-09-13		Analyzed By: AH
Prep Batch: 54234		QC Preparation:	2009-09-13		Prepared By: AH
					ъ
Parameter		Flag	Result	Units	$egin{array}{c} ext{Reporting} \ ext{Limits} \end{array}$
Total Kjeldahl Nitrogen - N		riag	<2.45	mg/L	2.45
				3.	
Method Blank (1)					
QC Batch: 63546		Date Analyzed:	2009-09-15		Analyzed By: RR
Prep Batch: 54109		QC Preparation:	2009-09-10		Prepared By: KV
_		-			Reporting
Parameter	Flag	Res		Units	Limits
Total Calcium		<0.1	.1 (m mg/L	0.117
Method Blank (1)					
QC Batch: 63546		Date Analyzed:	2009-09-15		Analyzed By: RR
Prep Batch: 54109		QC Preparation:	2009-09-10		Prepared By: KV
Parameter	Flag	Re	sult	Units	$\begin{array}{c} \text{Reporting} \\ \text{Limits} \end{array}$
Total Potassium	1148		$\frac{172}{172}$	$\frac{\rm mg/L}$	0.172
				07	
Method Blank (1)					
QC Batch: 63546		Date Analyzed:	2009-09-15		Analyzed By: RR
Prep Batch: 54109		QC Preparation:	2009-09-10		Prepared By: KV
Parameter	Flag	$\mathrm{R}\epsilon$	esult	Units	$\begin{array}{c} \text{Reporting} \\ \text{Limits} \end{array}$
	0	100			

< 0.160

mg/L

0.16

Total Magnesium

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 29 of 78

HELSTF Diesel Spill Groundwater

		HELSIF Diesei Spin Groundw	ater	
Method Blank (1)				
QC Batch: 63546		Date Analyzed: 2009-09-15		Analyzed By: RR
Prep Batch: 54109		QC Preparation: 2009-09-10		Prepared By: KV
D	DI	D 4	TT '	Reporting
Parameter Total Sodium	Flag	Result < 0.0500	$\frac{\rm Units}{\rm mg/L}$	Limits 0.05
Total Bodium		X0.0900	8/ 12	0.00
Method Blank (1)				
QC Batch: 63678		Date Analyzed: 2009-09-17		Analyzed By: KV
Prep Batch: 54367		QC Preparation: 2009-09-17		Prepared By: KV
				Reporting
Parameter	Fla		Units	Limits
Total Organic Carbon		< 0.401	m mg/L	0.401
Method Blank (1)				
QC Batch: 63680		Date Analyzed: 2009-09-04		Analyzed By: JR
Prep Batch: 54369		QC Preparation: 2009-09-04		Prepared By: JR
				Donantina
Parameter	Flag	Result	Units	$egin{array}{c} ext{Reporting} \ ext{Limits} \end{array}$
Bromide	8	< 0.0394	mg/L	0.0394
Method Blank (1)				
Method Blank (1)				
QC Batch: 63680		Date Analyzed: 2009-09-04		Analyzed By: JR
Prep Batch: 54369		QC Preparation: 2009-09-04		Prepared By: JR
				Reporting
Parameter	Flag	Result	Units	Limits
Chloride		< 0.640	m mg/L	0.6404
Method Blank (1)				
QC Batch: 63680		Date Analyzed: 2009-09-04		Analyzed By: JR
Prep Batch: 54369		QC Preparation: 2009-09-04		Prepared By: JR
				Reporting
Parameter	Flag	Result	Units	Limits
Fluoride		< 0.0434	${ m mg/L}$	0.0434

Report Date: September 22, 2009 Work Order: 9090810 Page Number: 30 of 78

HELSTF Diesel Spill Groundwater

Method Blank (1)

QC Batch: 63680 Date Analyzed: 2009-09-04 Analyzed By: JR Prep Batch: 54369 QC Preparation: 2009-09-04 Prepared By: JR

Method Blank (1)

QC Batch: 63681 Date Analyzed: 2009-09-17 Analyzed By: KV

Prep Batch: 54370 QC Preparation: 2009-09-17 Prepared By: KV

Method Blank (1)

QC Batch: 63683 Date Analyzed: 2009-09-15 Analyzed By: JG Prep Batch: 54372 QC Preparation: 2009-09-15 Prepared By: JG

Reporting Units Limits Parameter Flag Result Hydroxide Alkalinity <1.00 mg/L as CaCo3 1 mg/L as CaCo3 1 Carbonate Alkalinity < 1.00Bicarbonate Alkalinity < 4.00mg/L as CaCo3 4

< 4.00

mg/L as CaCo3

4

Method Blank (1)

Total Alkalinity

QC Batch: 63805 Date Analyzed: 2009-09-21 Analyzed By: MD Prep Batch: 54472 QC Preparation: 2009-09-22 Prepared By: MD

Duplicate (1) Duplicated Sample: 209321

QC Batch: 63344 Date Analyzed: 2009-09-04 Analyzed By: JG Prep Batch: 54067 QC Preparation: 2009-09-04 Prepared By: JG

Work Order: 9090810 HELSTF Diesel Spill Groundwater Page Number: 31 of 78

	Duplicate	\mathbf{Sample}				RPD
Param	Result	Result	Units	Dilution	RPD	Limit
nН	7 10	7 11	C 11	1	Ω	1 1

Duplicate (1) Duplicated Sample: 209230

QC Batch: 63474 Date Analyzed: 2009-09-08 Analyzed By: MD Prep Batch: 54174 QC Preparation: 2009-09-08 Prepared By: MD

	Duplicate	\mathbf{Sample}				RPD
Param	Result	Result	Units	$\operatorname{Dilution}$	RPD	Limit
Total Dissolved Solids	7840	7970	$_{ m mg/L}$	1	2	10

Duplicate (1) Duplicated Sample: 209227

QC Batch: 63683 Date Analyzed: 2009-09-15 Analyzed By: JG
Prep Batch: 54372 QC Preparation: 2009-09-15 Prepared By: JG

	Duplicate	$_{\rm Sample}$				RPD
Param	Result	Result	Units	$\operatorname{Dilution}$	RPD	Limit
Hydroxide Alkalinity	<1.00	< 1.00	mg/L as CaCo3	1	0	20
Carbonate Alkalinity	< 1.00	< 1.00	mg/L as CaCo3	1	0	20
Bicarbonate Alkalinity	1180	1180	mg/L as CaCo3	1	0	20
Total Alkalinity	1180	1180	mg/L as CaCo3	1	0	20

Laboratory Control Spike (LCS-1)

QC Batch: 63337 Date Analyzed: 2009-09-04 Analyzed By: JR
Prep Batch: 54061 QC Preparation: 2009-09-04 Prepared By: JR

	$_{ m LCS}$			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit
Hexavalent Chromium	0.499	${ m mg/L}$	1	0.500	< 0.00594	100	95.4 - 105

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	$_{ m LCSD}$			${ m Spike}$	Matrix		$\mathrm{Rec.}$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Hexavalent Chromium	0.495	mg/L	1	0.500	< 0.00594	99	95.4 - 105	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63348 Date Analyzed: 2009-09-08 Analyzed By: MT Prep Batch: 54070 QC Preparation: 2009-09-08 Prepared By: MT

Work Order: 9090810 HELSTF Diesel Spill Groundwater

	$_{ m LCS}$			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
GRO	1.14	$_{ m mg/L}$	1	1.00	< 0.152	114	75.5 - 118

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit	RPD	Limit
GRO	1.14	mg/L	1	1.00	< 0.152	114	75.5 - 118	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	$_{ m LCSD}$			$_{ m Spike}$	LCS	LCSD	$\mathrm{Rec}.$
$\mathbf{Surrogate}$	Result	Result	Units	Dil.	${f Amount}$	Rec .	Rec .	Limit
Trifluorotoluene (TFT)	0.101	0.105	$\mathrm{mg/L}$	1	0.100	101	105	78.2 - 121
4-Bromofluorobenzene (4-BFB)	0.101	0.104	mg/L	1	0.100	101	104	82.2 - 118

Laboratory Control Spike (LCS-1)

QC Batch: 63359 Prep Batch: 54081

Date Analyzed: 2009-09-08 QC Preparation: 2009-09-08 Analyzed By: Prepared By:

Page Number: 32 of 78

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${ m Amount}$	Result	$\mathrm{Rec}.$	Limit
DRO	26.7	m mg/L	1	25.0	< 0.876	107	78.6 - 154

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit	RPD	Limit
DRO	28.2	mg/L	1	25.0	< 0.876	113	78.6 - 154	6	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	${f Amount}$	Rec.	$\mathrm{Rec.}$	Limit
n-Triacontane	8.54	8.74	$_{ m mg/L}$	1	10.0	85	87	57.3 - 151

Laboratory Control Spike (LCS-1)

QC Batch: 63372 Date Analyzed: Prep Batch: 54088

2009-09-09 QC Preparation: 2009-09-09 Analyzed By: TP Prepared By: TP

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec}.$	Limit
Total Mercury	0.000990	$\mathrm{mg/L}$	1	0.00100	< 0.0000329	99	90.3 - 108

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec.}$		RPD
Param	Result	Units	Dil.	A mount	Result	Rec .	Limit	RPD	Limit
Total Mercury	0.00102	mg/L	1	0.00100	< 0.0000329	102	90.3 - 108	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

${\it Work~Order:~9090810} \\ {\it HELSTF~Diesel~Spill~Groundwater}$

Page Number: 33 of 78

Laboratory Control Spike (LCS-1)

QC Batch: 63393 Date Analyzed: 2009-09-10 Analyzed By: MN Prep Batch: 54112 QC Preparation: 2009-09-08 Prepared By: MN

		LCS			Spike	Matrix		$\mathrm{Rec}.$
Param		Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit
Phenol		0.0142	$\mathrm{mg/L}$	1	0.0800	< 0.000509	18	10 - 66.5
2-Chlorophenol		0.0356	$\mathrm{mg/L}$	1	0.0800	< 0.000537	44	11.2 - 108
1,4-Dichlorobenzene (para)		0.0341	$\mathrm{mg/L}$	1	0.0800	< 0.000440	43	16 - 101
N-Nitrosodi-n-propylamine		0.0466	$\mathrm{mg/L}$	1	0.0800	< 0.000732	58	10 - 142
1,2,4-Trichlorobenzene		0.0353	$\mathrm{mg/L}$	1	0.0800	< 0.000404	44	18 - 118
${ m Naphthalene}$		0.0369	$\mathrm{mg/L}$	1	0.0800	< 0.000489	46	20.2 - 114
4-Chloro-3-methylphenol		0.0539	$\mathrm{mg/L}$	1	0.0800	< 0.000522	67	21.5 - 125
${ m Acenapht hylene}$		0.0465	$\mathrm{mg/L}$	1	0.0800	< 0.000586	58	25.8 - 121
${ m Acenaphthene}$		0.0462	${ m mg/L}$	1	0.0800	< 0.000423	58	33.5 - 122
4-Nitrophenol		0.0204	${ m mg/L}$	1	0.0800	< 0.00185	26	10 - 125
2,4-Dinitrotoluene		0.0550	${ m mg/L}$	1	0.0800	< 0.000911	69	53 - 130
Fluorene		0.0502	${ m mg/L}$	1	0.0800	< 0.000648	63	44.6 - 117
${ m Pentachlorophenol}$		0.0148	${ m mg/L}$	1	0.0800	< 0.000435	18	10 - 139
${ m Anthracene}$		0.0481	${ m mg/L}$	1	0.0800	< 0.000428	60	57.5 - 115
Phenanthrene		0.0504	$\mathrm{mg/L}$	1	0.0800	< 0.000548	63	55.5 - 118
${ m Fluoranthene}$		0.0541	${ m mg/L}$	1	0.0800	< 0.000632	68	57 - 122
Pyrene	8	0.0453	${ m mg/L}$	1	0.0800	< 0.000723	57	58.5 - 130
$\operatorname{Benzo}(\operatorname{a})\operatorname{anthracene}$	9	0.0467	${ m mg/L}$	1	0.0800	< 0.000527	58	63.4 - 109
Chrysene		0.0492	${ m mg/L}$	1	0.0800	< 0.000638	62	54.7 - 114
$\operatorname{Benzo}(b)$ fluoranthene	10	0.0434	$\mathrm{mg/L}$	1	0.0800	< 0.000879	54	64.8 - 120
$\operatorname{Benzo}(k)$ fluoranthene		0.0675	${ m mg/L}$	1	0.0800	< 0.000845	84	70.3 - 114
$\operatorname{Benzo}(a)$ pyrene		0.0612	$\mathrm{mg/L}$	1	0.0800	< 0.00167	76	63.7 - 120
Indeno(1,2,3-cd)pyrene		0.0598	${ m mg/L}$	1	0.0800	< 0.000862	75	65.4 - 119
${ m Dibenzo(a,h)}$ anthracene		0.0600	$\mathrm{mg/L}$	1	0.0800	< 0.000809	75	68.7 - 117
$\mathrm{Benzo}(\mathrm{g,h,i})$ perylene		0.0613	m mg/L	1	0.0800	< 0.000949	77	57.2 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Phenol	0.0145	mg/L	1	0.0800	< 0.000509	18	10 - 66.5	2	20
2-Chlorophenol	0.0359	$\mathrm{mg/L}$	1	0.0800	< 0.000537	45	11.2 - 108	1	20
1,4-Dichlorobenzene (para)	0.0337	$\mathrm{mg/L}$	1	0.0800	< 0.000440	42	16 - 101	1	20
N-Nitrosodi-n-propylamine	0.0459	$\mathrm{mg/L}$	1	0.0800	< 0.000732	57	10 - 142	2	20
1,2,4-Trichlorobenzene	0.0347	${ m mg/L}$	1	0.0800	< 0.000404	43	18 - 118	2	20
Naphthalene	0.0369	$\mathrm{mg/L}$	1	0.0800	< 0.000489	46	20.2 - 114	0	20
4-Chloro-3-methylphenol	0.0541	$\mathrm{mg/L}$	1	0.0800	< 0.000522	68	21.5 - 125	0	20
${ m Acenapht}$ hylene	0.0459	$\mathrm{mg/L}$	1	0.0800	< 0.000586	57	25.8 - 121	1	20
${ m Acenapht}$ hene	0.0457	$\mathrm{mg/L}$	1	0.0800	< 0.000423	57	33.5 - 122	1	20
4-Nitrophenol	0.0203	mg/L	1	0.0800	< 0.00185	25	10 - 125	0	20

 $continued \dots$

⁸Spike analyte out of control limits. Results biased low. •

⁹Spike analyte out of control limits. Results biased low. •

¹⁰Spike analyte out of control limits. Results biased low. •

Page Number: 34 of 78

control spikes continued . . .

ı		LCSD			Spike	Matrix		Rec .		RPD
Param		Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit	RPD	Limit
2,4-Dinitrotoluene		0.0536	mg/L	1	0.0800	< 0.000911	67	53 - 130	3	20
Fluorene		0.0496	$\mathrm{mg/L}$	1	0.0800	< 0.000648	62	44.6 - 117	1	20
${ m Pentachlorophenol}$		0.0161	$\mathrm{mg/L}$	1	0.0800	< 0.000435	20	10 - 139	8	20
${ m Anthracene}$		0.0491	$\mathrm{mg/L}$	1	0.0800	< 0.000428	61	57.5 - 115	2	20
Phenanthrene		0.0514	$\mathrm{mg/L}$	1	0.0800	< 0.000548	64	55.5 - 118	2	20
Fluoranthene		0.0549	$\mathrm{mg/L}$	1	0.0800	< 0.000632	69	57 - 122	2	20
Pyrene		0.0463	$\mathrm{mg/L}$	1	0.0800	< 0.000723	58	58.5 - 130	2	20
$\operatorname{Benzo}(\operatorname{a}) \operatorname{anthracene}$	11	0.0476	$\mathrm{mg/L}$	1	0.0800	< 0.000527	60	63.4 - 109	2	20
Chrysene		0.0502	mg/L	1	0.0800	< 0.000638	63	54.7 - 114	2	20
$\operatorname{Benzo}(b)$ fluoranthene	12	0.0558	mg/L	1	0.0800	< 0.000879	70	64.8 - 120	25	20
$\operatorname{Benzo}(k)$ fluoranthene		0.0692	$\mathrm{mg/L}$	1	0.0800	< 0.000845	86	70.3 - 114	2	20
$\mathrm{Benzo}(\mathrm{a})\mathrm{pyrene}$		0.0604	$\mathrm{mg/L}$	1	0.0800	< 0.00167	76	63.7 - 120	1	20
Indeno(1,2,3-cd)pyrene		0.0591	$\mathrm{mg/L}$	1	0.0800	< 0.000862	74	65.4 - 119	1	20
${ m Dibenzo(a,h)}$ anthracene		0.0616	$\mathrm{mg/L}$	1	0.0800	< 0.000809	77	68.7 - 117	3	20
$\mathrm{Benzo}(\mathrm{g,h,i})$ perylene		0.0630	mg/L	1	0.0800	< 0.000949	79	57.2 - 125	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	$\mathrm{Rec}.$
Surrogate	Result	Result	Units	Dil.	${f Amount}$	Rec .	$\mathrm{Rec}.$	Limit
2-Fluorophenol	0.0285	0.0283	$\mathrm{mg/L}$	1	0.0800	36	35	10 - 53.1
Phenol-d5	0.0192	0.0195	${ m mg/L}$	1	0.0800	24	24	10 - 36.9
Nitrobenzene-d5	0.0465	0.0464	${ m mg/L}$	1	0.0800	58	58	23.8 - 108
2-Fluorobiphenyl	0.0489	0.0486	$\mathrm{mg/L}$	1	0.0800	61	61	15.9 - 127
2,4,6-Tribromophenol	0.0799	0.0799	$\mathrm{mg/L}$	1	0.0800	100	100	10 - 123
Terphenyl-d14	0.0635	0.0653	$\mathrm{mg/L}$	1	0.0800	79	82	17.2 - 160

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR Prep Batch: 54109 QC Preparation: 2009-09-10 Prepared By: KV

	LCS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil .	${f Amount}$	Result	Rec .	Limit
Total Silver	0.124	mg/L	1	0.125	< 0.00111	99	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Silver	0.122	$\mathrm{mg/L}$	1	0.125	< 0.00111	98	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

¹² RPD outside RPD limits.

¹¹Spike analyte out of control limits. Results biased low. •

Work Order: 9090810 HELSTF Diesel Spill Groundwater

Laboratory Control Spike (LCS-1)

QC Batch: 63415Prep Batch: 54109

Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10

Analyzed By: RR Prepared By: KV

Page Number: 35 of 78

	LCS			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Total Aluminum	0.888	$\mathrm{mg/L}$	1	1.00	< 0.00301	89	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Aluminum	0.867	$\mathrm{mg/L}$	1	1.00	< 0.00301	87	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63415Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10

Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Total Arsenic	0.478	$_{ m mg/L}$	1	0.500	< 0.00448	96	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	$_{ m LCSD}$			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Arsenic	0.468	mg/L	1	0.500	< 0.00448	94	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63415Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10

Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec}.$	${f Limit}$
Total Barium	1.02	$\mathrm{mg/L}$	1	1.00	< 0.00105	102	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Barium	1.01	mg/L	1	1.00	< 0.00105	101	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Work Order: 9090810 HELSTF Diesel Spill Groundwater

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

Page Number: 36 of 78

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Total Beryllium	0.0250	$\mathrm{mg/L}$	1	0.0250	< 0.000450	100	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	$_{ m LCSD}$			$_{ m Spike}$	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit	RPD	Limit
Total Beryllium	0.0238	mg/L	1	0.0250	< 0.000450	95	85 - 115	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
Total Cadmium	0.246	$_{ m mg/L}$	1	0.250	< 0.000303	98	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit	RPD	Limit
Total Cadmium	0.242	mg/L	1	0.250	< 0.000303	97	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	$_{ m LCS}$			Spike	Matrix		Rec .
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Total Cobalt	0.245	m mg/L	1	0.250	< 0.000822	98	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Cobalt	0.241	mg/L	1	0.250	< 0.000822	96	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Page Number: 37 of 78

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10

Analyzed By: RR Prepared By: KV

	$_{ m LCS}$			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Total Chromium	0.0960	$\mathrm{mg/L}$	1	0.100	< 0.000583	96	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil .	Amount	Result	Rec.	Limit	RPD	Limit
Total Chromium	0.0940	$\mathrm{mg/L}$	1	0.100	< 0.000583	94	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec.}$	Limit
Total Copper	0.124	$_{ m mg/L}$	1	0.125	< 0.000843	99	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil .	$\mathbf{A}\mathbf{mount}$	Result	Rec.	Limit	RPD	Limit
Total Copper	0.119	mg/L	1	0.125	< 0.000843	95	85 - 115	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10

Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec}.$	${f Limit}$
Total Iron	0.436	$\mathrm{mg/L}$	1	0.500	< 0.000872	87	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Iron	0.443	mg/L	1	0.500	< 0.000872	89	85 - 115	2	20

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

Page Number: 38 of 78

	LCS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit
Total Manganese	0.257	${ m mg/L}$	1	0.250	< 0.000305	103	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Manganese	0.253	mg/L	1	0.250	< 0.000305	101	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Total Molybdenum	0.546	$_{ m mg/L}$	1	0.500	< 0.00119	109	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Molybdenum	0.536	mg/L	1	0.500	< 0.00119	107	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	${f Limit}$
Total Nickel	0.250	m mg/L	1	0.250	< 0.00121	100	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	$_{ m LCSD}$			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Nickel	0.246	mg/L	1	0.250	< 0.00121	98	85 - 115	2	20

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10

Analyzed By: RR Prepared By: KV

Page Number: 39 of 78

	LCS			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	$\mathrm{Dil}.$	${f Amount}$	Result	Rec .	Limit
Total Phosphorous	0.452	$\mathrm{mg/L}$	1	0.500	< 0.00289	90	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Phosphorous	0.447	$\mathrm{mg/L}$	1	0.500	< 0.00289	89	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		Rec.
Param	Result	Units	$\mathrm{Dil}.$	${f Amount}$	Result	Rec.	Limit
Total Lead	0.475	mg/L	1	0.500	< 0.00326	95	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Lead	0.466	mg/L	1	0.500	< 0.00326	93	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	${f Limit}$
Total Antimony	0.238	$\mathrm{mg/L}$	1	0.250	< 0.00440	95	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Antimony	0.233	mg/L	1	0.250	< 0.00440	93	85 - 115	2	20

Laboratory Control Spike (LCS-1)

${\it Work~Order:~9090810} \\ {\it HELSTF~Diesel~Spill~Groundwater}$

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

Page Number: 40 of 78

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil .	${f Amount}$	Result	$\mathrm{Rec}.$	Limit
Total Selenium	0.440	$\mathrm{mg/L}$	1	0.500	< 0.00508	88	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Total Selenium	0.444	mg/L	1	0.500	< 0.00508	89	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Total Thallium	0.504	$_{ m mg/L}$	1	0.500	< 0.00488	101	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Thallium	0.494	mg/L	1	0.500	< 0.00488	99	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		Rec .
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec}.$	Limit
Total Vanadium	0.243	$\mathrm{mg/L}$	1	0.250	< 0.000426	97	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Vanadium	0.241	mg/L	1	0.250	< 0.000426	96	85 - 115	1	20

Page Number: 41 of 78

KV

Laboratory Control Spike (LCS-1)

Analyzed By: RR QC Batch: 63415Date Analyzed: 2009-09-10 Prep Batch: 54109QC Preparation: 2009-09-10 Prepared By:

	$_{ m LCS}$			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Total Zinc	0.234	$_{ m mg/L}$	1	0.250	< 0.000465	94	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Zinc	0.234	mg/L	1	0.250	< 0.000465	94	85 - 115	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63426Date Analyzed: 2009-09-10 Analyzed By: DS Prep Batch: 54138 Prepared By: DS QC Preparation: 2009-09-09

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec.}$	Limit
HMX	2.55	$\mu { m g/L}$	1	2.50	< 0.123	102	63.5 - 125
RDX	2.35	$\mu { m g}/{ m L}$	1	2.50	< 0.298	94	74.5 - 124
1,3,5-Trinitrobenzene	2.39	$\mu { m g}/{ m L}$	1	2.50	< 0.339	96	54.1 - 131
1,3-Dinitrobenzene	2.38	$\mu { m g}/{ m L}$	1	2.50	< 0.389	95	72 - 112
Nitrobenzene	2.56	$\mu { m g}/{ m L}$	1	2.50	< 0.379	102	72.5 - 126
Tetryl	2.43	$\mu { m g}/{ m L}$	1	2.50	< 0.413	97	35.9 - 149
TNT	2.41	$\mu { m g}/{ m L}$	1	2.50	< 0.464	96	40.7 - 129
4-Amino-DNT	2.62	$\mu { m g}/{ m L}$	1	2.50	< 0.319	105	80 - 120
2-Amino-DNT	2.49	$\mu { m g}/{ m L}$	1	2.50	< 0.391	100	80 - 120
2,6-DNT	2.26	$\mu { m g}/{ m L}$	1	2.50	< 0.323	90	80 - 120
2,4-DNT	2.63	$\mu { m g}/{ m L}$	1	2.50	< 0.366	105	80 - 120
2-NT	2.59	$\mu { m g}/{ m L}$	1	2.50	< 0.379	104	49.8 - 139
4-NT	2.18	$\mu { m g}/{ m L}$	1	2.50	< 0.398	87	56.3 - 141
3-NT	2.32	$\mu { m g}/{ m L}$	1	2.50	< 0.346	93	66.2 - 129

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec.}$		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec}.$	Limit	RPD	Limit
HMX	2.47	$\mu { m g/L}$	1	2.50	< 0.123	99	63.5 - 125	3	20
RDX	2.27	$\mu { m g}/{ m L}$	1	2.50	< 0.298	91	74.5 - 124	4	20
1,3,5-Trinitrobenzene	2.30	$\mu \mathrm{g}/\mathrm{L}$	1	2.50	< 0.339	92	54.1 - 131	4	20
1,3-Dinitrobenzene	2.38	$\mu \mathrm{g}/\mathrm{L}$	1	2.50	< 0.389	95	72 - 112	0	20
Nitrobenzene	2.37	$\mu \mathrm{g}/\mathrm{L}$	1	2.50	< 0.379	95	72.5 - 126	8	20
Tetryl	2.12	$\mu \mathrm{g}/\mathrm{L}$	1	2.50	< 0.413	85	35.9 - 149	14	20
TNT	2.28	$\mu \mathrm{g}/\mathrm{L}$	1	2.50	< 0.464	91	40.7 - 129	6	20
4-Amino-DNT	2.55	$\mu { m g}/{ m L}$	1	2.50	< 0.319	102	80 - 120	3	20

 $continued \dots$

Work Order: 9090810 Page Number: 42 of 78

control spikes continued . . .

	LCSD			Spike	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
2-Amino-DNT	2.57	$\mu \mathrm{g/L}$	1	2.50	< 0.391	103	80 - 120	3	20
2,6-DNT	2.26	$\mu { m g/L}$	1	2.50	< 0.323	90	80 - 120	0	20
2,4-DNT	2.53	$\mu { m g/L}$	1	2.50	< 0.366	101	80 - 120	4	20
2-NT	2.37	$\mu { m g/L}$	1	2.50	< 0.379	95	49.8 - 139	9	20
4-NT	2.07	$\mu { m g/L}$	1	2.50	< 0.398	83	56.3 - 141	5	20
3-NT	2.20	$\mu { m g/L}$	1	2.50	< 0.346	88	66.2 - 129	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	$\mathrm{Rec}.$
$\mathbf{Surrogate}$	Result	Result	Units	Dil.	${f Amount}$	Rec .	$\mathrm{Rec}.$	Limit
1,2-Dinitrobenzene	2.28	2.30	$\mu \mathrm{g/L}$	1	2.50	91	92	53 - 134

Laboratory Control Spike (LCS-1)

63462QC Batch: Prep Batch: 54154

Date Analyzed: 2009-09-11 QC Preparation: 2009-09-11

Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Dissolved Chromium	0.100	$\mathrm{mg/L}$	1	0.100	< 0.000583	100	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit	RPD	Limit
Dissolved Chromium	0.101	$\mathrm{mg/L}$	1	0.100	< 0.000583	101	85 - 115	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63546 Prep Batch: 54109 Date Analyzed: 2009-09-15 QC Preparation: 2009-09-10

Analyzed By: RR Prepared By: KV

	$_{ m LCS}$			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	$\mathrm{Rec.}$	Limit
Total Calcium	51.4	$\mathrm{mg/L}$	1	50.0	< 0.117	103	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Total Calcium	52.9	$\mathrm{mg/L}$	1	50.0	< 0.117	106	85 - 115	3	20

Page Number: 43 of 78

Laboratory Control Spike (LCS-1)

QC Batch: 63546 Prep Batch: 54109 Date Analyzed: 2009-09-15 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Total Potassium	51.5	${ m mg/L}$	1	50.0	< 0.172	103	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil .	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Total Potassium	52.4	mg/L	1	50.0	< 0.172	105	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63546 Prep Batch: 54109 Date Analyzed: 2009-09-15 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Total Magnesium	49.6	mg/L	1	50.0	< 0.160	99	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Total Magnesium	50.5	mg/L	1	50.0	< 0.160	101	85 - 115	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63546 Prep Batch: 54109 Date Analyzed: 2009-09-15 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Total Sodium	52.3	$\mathrm{mg/L}$	1	50.0	< 0.0500	105	85 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Total Sodium	53.1	mg/L	1	50.0	< 0.0500	106	85 - 115	2	20

Page Number: 44 of 78

Laboratory Control Spike (LCS-1)

QC Batch: 63678 Prep Batch: 54367

Date Analyzed: 2009-09-17 QC Preparation: 2009-09-17

Analyzed By: KV Prepared By:

	LCS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
Total Organic Carbon	52.5	${ m mg/L}$	1	50.0	< 0.401	105	89.5 - 114

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	$_{ m LCSD}$			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Organic Carbon	52.5	$\mathrm{mg/L}$	1	50.0	< 0.401	105	89.5 - 114	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63680 Prep Batch: 54369 Date Analyzed: 2009-09-04 QC Preparation: 2009-09-04

Analyzed By: JR Prepared By: $_{
m JR}$

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Bromide	4.78	$_{ m mg/L}$	1	5.00	< 0.0394	96	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Bromide	4.75	mg/L	1	5.00	< 0.0394	95	90 - 110	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63680 Prep Batch: 54369 Date Analyzed: 2009-09-04 QC Preparation: 2009-09-04 Analyzed By: JR Prepared By: JR

	$_{ m LCS}$			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Chloride	24.3	$\mathrm{mg/L}$	1	25.0	< 0.640	97	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil .	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Chloride	24.2	$\mathrm{mg/L}$	1	25.0	< 0.640	97	90 - 110	0	20

Laboratory Control Spike (LCS-1)

 QC Batch:
 63680
 Date Analyzed:
 2009-09-04

 Prep Batch:
 54369
 QC Preparation:
 2009-09-04

Analyzed By: JR Prepared By: JR

Page Number: 45 of 78

	LCS			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
Fluoride	4.75	${ m mg/L}$	1	5.00	< 0.0434	95	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			$_{ m Spike}$	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Fluoride	4.73	mg/L	1	5.00	< 0.0434	95	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63680 Date Analyzed: 2009-09-04 Analyzed By: JR
Prep Batch: 54369 QC Preparation: 2009-09-04 Prepared By: JR

	LCS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${ m Amount}$	Result	$\mathrm{Rec}.$	Limit
Sulfate	23.8	$_{ m mg/L}$	1	25.0	< 0.504	95	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Sulfate	23.7	mg/L	1	25.0	< 0.504	95	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: 63805 Date Analyzed: 2009-09-21 Analyzed By: MD Prep Batch: 54472 QC Preparation: 2009-09-22 Prepared By: MD

		LCS			Spike	Matrix		$\mathrm{Rec}.$
Param		Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
Oil and Grease	13	21.9	mg/L	1	40.0	< 3.60	55	78 - 114

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		LCSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param		Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Oil and Grease	14	28.0	mg/L	1	40.0	< 3.60	70	78 - 114	24	18

¹³SPECIAL: Sodium Sulfate may have caused low LCS and LCSD results. Samples may be biased low. •

 $^{^{14}}$ SPECIAL: Sodium Sulfate may have caused low LCS and LCSD results. Samples may be biased low. ullet

Page Number: 46 of 78

Analyzed By:

Prepared By:

 $_{
m JR}$

 $_{
m JR}$

Matrix Spike (MS-1) Spiked Sample: 209322

 QC Batch:
 63337
 Date Analyzed:
 2009-09-04

 Prep Batch:
 54061
 QC Preparation:
 2009-09-04

MSSpike Matrix Rec. Param Result Units Dil. A mount Result Rec. Limit Hexavalent Chromium 0.623 1.11 80.1 - 118 mg/L0.5560.07598

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Hexavalent Chromium	0.635	mg/L	1.11	0.556	0.075	101	80.1 - 118	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63348 Date Analyzed: 2009-09-08 Analyzed By: MT Prep Batch: 54070 QC Preparation: 2009-09-08 Prepared By: MT

MSSpike Matrix Rec. Limit Param Result Units Dil. Amount Result Rec. GRO 0.865mg/L1.00 0.216 65 48.4 - 136

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec .		RPD
Param		Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
GRO	15	0.696	mg/L	1	1.00	0.216	48	48.4 - 136	22	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MS	MSD			Spike	MS	MSD	$\mathrm{Rec.}$
$\operatorname{Surrogate}$		Result	Result	Units	$\mathrm{Dil}.$	${f Amount}$	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	16	0.0826	0.0570	${ m mg/L}$	1	0.1	83	57	70.3 - 129
4-Bromofluorobenzene (4-BFB)	17	0.0870	0.0630	${ m mg/L}$	1	0.1	87	63	82.5 - 118

Matrix Spike (MS-1) Spiked Sample: 209323

 QC Batch:
 63359
 Date Analyzed:
 2009-09-08
 Analyzed By:

 Prep Batch:
 54081
 QC Preparation:
 2009-09-08
 Prepared By:

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${ m Amount}$	Result	$\mathrm{Rec}.$	Limit
DRO	60.7	$\mathrm{mg/L}$	1	25.0	38.7	88	54 - 144

¹⁵MS/MSD RPD out of RPD Limits. Use LCS/LCSD to demonstrate analysis is under control.

¹⁶ Matrix spike recovery out of control limits. Use LCS/LCSD to demonstrate analysis is under control.

 $^{^{17}\}mathrm{Matrix}$ spike recovery out of control limits. Use LCS/LCSD to demonstrate analysis is under control.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
DRO	64.6	mø/L	1	25.0	38.7	104	54 - 144	6	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	$\mathrm{Rec}.$
$\mathbf{Surrogate}$	Result	Result	Units	Dil.	${f Amount}$	$\mathrm{Rec}.$	$\mathrm{Rec.}$	Limit
n-Triacontane	10.9	10.6	$_{ m mg/L}$	1	10	109	106	57.3 - 151

Matrix Spike (MS-1) Spiked Sample: 209296

 QC Batch:
 63372
 Date Analyzed:
 2009-09-09

 Prep Batch:
 54088
 QC Preparation:
 2009-09-09

alyzed: 2009-09-09 Analyzed By: TP baration: 2009-09-09 Prepared By: TP

Page Number: 47 of 78

		MS			Spike	Matrix		${ m Rec.}$
Param		Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Total Mercury	18	0.000790	mg/L	1	0.00100	< 0.0000329	79	80 - 116

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			${ m Spike}$	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec .	Limit	RPD	Limit
Total Mercury	0.000820	mg/L	1	0.00100	< 0.0000329	82	80 - 116	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209098

QC Batch: 63393 Date Analyzed: 2009-09-10 Analyzed By: MN
Prep Batch: 54112 QC Preparation: 2009-09-08 Prepared By: MN

Param		$rac{ m MS}{ m Result}$	Units	Dil.	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	Matrix Result	Rec.	$egin{array}{c} \operatorname{Rec.} \ \operatorname{Limit} \end{array}$
			=					
Phenol		0.0145	$\mathrm{mg/L}$	0.922	0.0800	< 0.000469	18	10 - 66.5
2-Chlorophenol		0.0347	${ m mg/L}$	0.922	0.0800	< 0.000495	43	11.2 - 108
1,4-Dichlorobenzene (para)		0.0324	$\mathrm{mg/L}$	0.922	0.0800	< 0.000406	40	16 - 101
N-Nitrosodi-n-propylamine		0.0430	$\mathrm{mg/L}$	0.922	0.0800	< 0.000675	54	10 - 142
1,2,4-Trichlorobenzene		0.0340	$\mathrm{mg/L}$	0.922	0.0800	< 0.000372	42	18 - 108
Naphthalene		0.0347	$\mathrm{mg/L}$	0.922	0.0800	< 0.000451	43	20.2 - 114
4-Chloro-3-methylphenol		0.0474	$\mathrm{mg/L}$	0.922	0.0800	< 0.000481	59	21.5 - 125
${ m Acenaphthylene}$		0.0423	$\mathrm{mg/L}$	0.922	0.0800	< 0.000540	53	25.8 - 121
${ m Acenaphthene}$		0.0413	$\mathrm{mg/L}$	0.922	0.0800	< 0.000390	52	33.5 - 122
4-Nitrophenol		0.0130	mg/L	0.922	0.0800	< 0.00170	16	10 - 125
2,4-Dinitrotoluene		0.0476	$\mathrm{mg/L}$	0.922	0.0800	< 0.000840	60	53 - 130
Fluorene		0.0445	$\mathrm{mg/L}$	0.922	0.0800	< 0.000597	56	44.6 - 117
${ m Pentachlorophenol}$		0.0163	$\mathrm{mg/L}$	0.922	0.0800	< 0.000401	20	10 - 139
Anthracene	19	0.0422	$\mathrm{mg/L}$	0.922	0.0800	< 0.000395	53	57.5 - 115

 $continued \dots$

 18 Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

¹⁹ Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

Dibenzo(a,h)anthracene

Benzo(g,h,i)perylene

Page Number: 48 of 78

matrix spikes continued								
		MS			Spike	Matrix		$\mathrm{Rec.}$
Param		Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Phenanthrene		0.0444	m mg/L	0.922	0.0800	< 0.000505	56	55.5 - 118
Fluoranthene		0.0471	${ m mg/L}$	0.922	0.0800	< 0.000583	59	57 - 122
Pyrene	20	0.0399	${ m mg/L}$	0.922	0.0800	< 0.000667	50	58.5 - 130
$\operatorname{Benzo}(\operatorname{a}) \operatorname{anthracene}$	21	0.0403	${ m mg/L}$	0.922	0.0800	< 0.000486	50	63.4 - 109
$\operatorname{Chrysene}$	22	0.0426	${ m mg/L}$	0.922	0.0800	< 0.000588	53	54.7 - 114
${\bf Benzo(b)}$ fluoranthene	23	0.0375	${ m mg/L}$	0.922	0.0800	< 0.000810	47	64.8 - 120
$\operatorname{Benzo}(k)$ fluoranthene		0.0599	$\mathrm{mg/L}$	0.922	0.0800	< 0.000779	75	70.3 - 114
Benzo(a)pyrene		0.0522	$\mathrm{mg/L}$	0.922	0.0800	< 0.00154	65	63.7 - 120
$\operatorname{Indeno}(1,2,3\text{-}\operatorname{cd})$ pyrene	24	0.0509	m mg/L	0.922	0.0800	< 0.000795	64	65.4 - 119

0.922

0.922

0.0800

0.0800

< 0.000746

< 0.000875

64

65

68.7 - 117

57.2 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

mg/L

mg/L

0.0514

0.0521

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Phenol		0.0149	mg/L	0.922	0.0800	< 0.000469	19	10 - 66.5	3	20
2-Chlorophenol		0.0351	$\mathrm{mg/L}$	0.922	0.0800	< 0.000495	44	11.2 - 108	1	20
1,4-Dichlorobenzene (para)		0.0332	$\mathrm{mg/L}$	0.922	0.0800	< 0.000406	42	16 - 101	2	20
N-Nitrosodi-n-propylamine		0.0438	$\mathrm{mg/L}$	0.922	0.0800	< 0.000675	55	10 - 142	2	20
1,2,4-Trichlorobenzene		0.0337	$\mathrm{mg/L}$	0.922	0.0800	< 0.000372	42	18 - 108	1	20
Naphthalene		0.0349	mg/L	0.922	0.0800	< 0.000451	44	20.2 - 114	1	20
4-Chloro-3-methylphenol		0.0481	$\mathrm{mg/L}$	0.922	0.0800	< 0.000481	60	21.5 - 125	2	20
${ m Acenapht}$ hylene		0.0432	$\mathrm{mg/L}$	0.922	0.0800	< 0.000540	54	25.8 - 121	2	20
${ m Acenaphthene}$		0.0426	$\mathrm{mg/L}$	0.922	0.0800	< 0.000390	53	33.5 - 122	3	20
4-Nitrophenol		0.0128	$\mathrm{mg/L}$	0.922	0.0800	< 0.00170	16	10 - 125	2	20
2,4-Dinitrotoluene		0.0486	mg/L	0.922	0.0800	< 0.000840	61	53 - 130	2	20
Fluorene		0.0454	mg/L	0.922	0.0800	< 0.000597	57	44.6 - 117	2	20
${ m Pentachlorophenol}$		0.0192	mg/L	0.922	0.0800	< 0.000401	24	10 - 139	16	20
${\bf Anthracene}$	26	0.0439	$\mathrm{mg/L}$	0.922	0.0800	< 0.000395	55	57.5 - 115	4	20
Phenanthrene		0.0449	mg/L	0.922	0.0800	< 0.000505	56	55.5 - 118	1	20
Fluoranthene		0.0483	$\mathrm{mg/L}$	0.922	0.0800	< 0.000583	60	57 - 122	2	20
Pyrene	27	0.0408	$\mathrm{mg/L}$	0.922	0.0800	< 0.000667	51	58.5 - 130	2	20
Benzo(a) anthracene	28	0.0407	mg/L	0.922	0.0800	< 0.000486	51	63.4 - 109	1	20
Chrysene	29	0.0433	mg/L	0.922	0.0800	< 0.000588	54	54.7 - 114	2	20
Benzo(b)fluoranthene	30	0.0454	mg/L	0.922	0.0800	< 0.000810	57	64.8 - 120	19	20
Benzo(k)fluoranthene	31	0.0564	mg/L	0.922	0.0800	< 0.000779	70	70.3 - 114	6	20
Benzo(a) pyrene		0.0521	mg/L	0.922	0.0800	< 0.00154	65	63.7 - 120	0	20

 $continued \dots$

²⁰ Matrix spike recovery out of control limits due to matrix interference. Result biased low.

²¹ Matrix spike recovery out of control limits due to matrix interference. Result biased low.

²²Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

²³ Matrix spike recovery out of control limits due to matrix interference. Result biased low.

²⁴Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

²⁵ Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

²⁶ Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

 $^{^{27}}$ Matrix spike recovery out of control limits due to matrix interference. Result biased low.

²⁸ Matrix spike recovery out of control limits due to matrix interference. Result biased low.

²⁹ Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

 $^{^{30}\,\}mathrm{Matrix}$ spike recovery out of control limits due to matrix interference. Result biased low.

³¹ Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

Page Number: 49 of 78

matrix spikes continued . . . MSD Spike Matrix Rec. RPD Param Dil. Amount Result Limit RPD Result Units Rec. Limit $\overline{\text{Indeno}(1,2,3\text{-cd})}$ pyrene 0.0532mg/L0.9220.0800< 0.000795 66 65.4 - 119 20 Dibenzo(a,h)anthracene mg/L0.92268.7 - 11720 0.05370.0800< 0.000746 67 4 Benzo(g,h,i)perylene 0.0536mg/L0.9220.0800< 0.00087557.2 - 1253 20 67

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	$\mathrm{Rec}.$
Surrogate	Result	Result	Units	$\mathrm{Dil}.$	${ m Amount}$	Rec .	$\mathrm{Rec}.$	Limit
2-Fluorophenol	0.0250	0.0247	m mg/L	0.922	0.08	31	31	10 - 53.1
${ m Phenol-d5}$	0.0159	0.0155	${ m mg/L}$	0.922	0.08	20	19	10 - 36.9
${ m Nitrobenzene-d5}$	0.0419	0.0422	$\mathrm{mg/L}$	0.922	0.08	52	53	23.8 - 108
2-Fluorobiphenyl	0.0443	0.0451	${ m mg/L}$	0.922	0.08	55	56	15.9 - 127
2,4,6-Tribromophenol	0.0585	0.0595	$\mathrm{mg/L}$	0.922	0.08	73	74	10 - 123
m Terphenyl-d14	0.0458	0.0475	$\mathrm{mg/L}$	0.922	0.08	57	59	17.2 - 160

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR
Prep Batch: 54109 QC Preparation: 2009-09-10 Prepared By: KV

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Total Silver	0.133	$_{ m mg/L}$	1	0.125	< 0.00111	106	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			$_{ m Spike}$	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Silver	0.133	mg/L	1	0.125	< 0.00111	106	75 - 125	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR
Prep Batch: 54109 QC Preparation: 2009-09-10 Prepared By: KV

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
Total Aluminum	1.09	mg/L	1	1.00	0.194	90	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	Amount	Result	Rec .	Limit	RPD	Limit
Total Aluminum	1.12	$_{ m mg/L}$	1	1.00	0.194	93	75 - 125	3	20

³²Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

Page Number: 50 of 78

MSSpike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit Total Arsenic 0.4860.500< 0.0044875 - 125 mg/L 97

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			$_{ m Spike}$	Matrix		Rec .		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Total Arsenic	0.488	mg/L	1	0.500	< 0.00448	98	75 - 125	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

MSSpike MatrixRec. Param Result Units Dil. Amount Result Rec. Limit Total Barium 1.01 mg/L1.00 0.031 98 75 - 125 1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Barium	1.02	mg/L	1	1.00	0.031	99	75 - 125	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

 QC Batch:
 63415
 Date Analyzed:
 2009-09-10

 Prep Batch:
 54109
 QC Preparation:
 2009-09-10

Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		Rec
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec.}$	Limit
Total Beryllium	0.0246	m mg/L	1	0.0250	< 0.000450	98	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Beryllium	0.0249	mg/L	1	0.0250	< 0.000450	100	75 - 125	1	20

Work Order: 9090810

HELSTF Diesel Spill Groundwater

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: Date Analyzed: 2009-09-10 63415 Prep Batch: 54109

Analyzed By: RR QC Preparation: 2009-09-10 Prepared By: KV

Page Number: 51 of 78

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${ m Amount}$	Result	$\mathrm{Rec.}$	Limit
Total Cadmium	0.220	$_{ m mg/L}$	1	0.250	< 0.000303	88	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Cadmium	0.223	mg/L	1	0.250	< 0.000303	89	75 - 125	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

2009-09-10 QC Batch: 63415Date Analyzed: Analyzed By: RR Prep Batch: 54109 QC Preparation: 2009-09-10 Prepared By: KV

	MS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	$\mathrm{Dil}.$	${ m Amount}$	Result	Rec .	Limit
Total Cobalt	0.228	$_{ m mg/L}$	1	0.250	< 0.000822	91	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Cobalt	0.230	mg/L	1	0.250	< 0.000822	92	75 - 125	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

Analyzed By: RR QC Batch: 63415Date Analyzed: 2009-09-10 Prep Batch: 54109QC Preparation: 2009-09-10 Prepared By: KV

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${ m Amount}$	Result	$\mathrm{Rec.}$	Limit
Total Chromium	0.0930	$\mathrm{mg/L}$	1	0.100	< 0.000583	93	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Chromium	0.0910	mg/L	1	0.100	< 0.000583	91	75 - 125	2	20

Page Number: 52 of 78

RR

KV

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By:
Prep Batch: 54109 QC Preparation: 2009-09-10 Prepared By:

MSSpike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit Total Copper 0.1340.125< 0.000843107 75 - 125 mg/L

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Copper	0.137	mg/L	1	0.125	< 0.000843	110	75 - 125	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR
Prep Batch: 54109 QC Preparation: 2009-09-10 Prepared By: KV

MSSpike Matrix Rec. Dil. Param Result Units Amount Result Rec. Limit Total Iron 0.469mg/L0.500 < 0.00087294 75 - 125 1

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Iron	0.484	mg/L	1	0.500	< 0.000872	97	75 - 125	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR
Prep Batch: 54109 QC Preparation: 2009-09-10 Prepared By: KV

MSSpike Matrix Rec. Param Result Units Dil. Result Limit Amount Rec. Total Manganese 0.553 mg/L0.2500.268 114 75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil .	${ m Amount}$	Result	Rec .	Limit	RPD	Limit
Total Manganese	0.568	mg/L	1	0.250	0.268	120	75 - 125	3	20

Order: 9090810 Page Number: 53 of 78

Matrix Spike (MS-1) Spiked Sample: 209227

 QC Batch:
 63415
 Date Analyzed:
 2009-09-10

 Prep Batch:
 54109
 QC Preparation:
 2009-09-10

Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec}.$	Limit
Total Molybdenum	0.521	mg/L	1	0.500	0.012	102	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Total Molybdenum	0.526	mg/L	1	0.500	0.012	103	75 - 125	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR
Prep Batch: 54109 QC Preparation: 2009-09-10 Prepared By: KV

	MS			$_{ m Spike}$	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
Total Nickel	0.226	$_{ m mg/L}$	1	0.250	< 0.00121	90	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	$\mathbf{A}\mathbf{mount}$	Result	Rec .	Limit	RPD	Limit
Total Nickel	0.230	mg/L	1	0.250	< 0.00121	92	75 - 125	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR
Prep Batch: 54109 QC Preparation: 2009-09-10 Prepared By: KV

	MS			$_{ m Spike}$	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Total Phosphorous	0.496	mg/L	1	0.500	0.013	97	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Phosphorous	0.507	$\mathrm{mg/L}$	1	0.500	0.013	99	75 - 125	2	20

Page Number: 54 of 78

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415Date Analyzed: 2009-09-10 Analyzed By: RRPrep Batch: 54109 QC Preparation: 2009-09-10 Prepared By: KV

MSSpike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit Total Lead 0.4110.500< 0.0032675 - 125 mg/L 82

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Lead	0.414	mg/L	1	0.500	< 0.00326	83	75 - 125	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415Date Analyzed: 2009-09-10 Analyzed By: RR Prep Batch: 54109Prepared By: KV QC Preparation: 2009-09-10

MSMatrix Spike Rec. Dil. Param Result Units Amount Result Rec. Limit Total Antimony 0.233 mg/L0.250 < 0.0044093 75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Total Antimony	0.227	mg/L	1	0.250	< 0.00440	91	75 - 125	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415Date Analyzed: 2009-09-10 Analyzed By: RR Prep Batch: 54109QC Preparation: 2009-09-10 Prepared By: KV

MSSpike Matrix Rec. Param Result Units Dil. Result Rec. Limit Amount Total Selenium 0.468mg/L 0.500 < 0.0050894 75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Total Selenium	0.454	mg/L	1	0.500	< 0.00508	91	75 - 125	3	20

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10

Analyzed By: RR Prepared By: KV

Page Number: 55 of 78

MSSpike Matrix Rec. Param Result Units Dil. Amount Result Rec. Limit Total Thallium 0.4240.500< 0.0048875 - 125 mg/L 85

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Total Thallium	0.427	$\mathrm{mg/L}$	1	0.500	< 0.00488	85	75 - 125	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

MSSpike MatrixRec. Result Param Units Dil. AmountResult Rec. Limit Total Vanadium 0.239 mg/L0.250 0.002 95 75 - 1251

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Vanadium	0.243	mg/L	1	0.250	0.002	96	75 - 125	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63415 Prep Batch: 54109 Date Analyzed: 2009-09-10 QC Preparation: 2009-09-10

Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		$\mathrm{Rec.}$
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec.}$	${f Limit}$
Total Zinc	0.235	$\mathrm{mg/L}$	1	0.250	< 0.000465	94	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Zinc	0.236	mg/L	1	0.250	< 0.000465	94	75 - 125	0	20

Page Number: 56 of 78

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63422 Date Analyzed: 2009-09-10 Analyzed By: AH Prep Batch: 54136 QC Preparation: 2009-09-10 Prepared By: AH

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Total Cyanide	0.118	${ m mg/L}$	1	0.120	< 0.0110	98	62.6 - 132

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			$_{ m Spike}$	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Total Cyanide	0.122	mg/L	1	0.120	< 0.0110	102	62.6 - 132	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209097

QC Batch: 63462 Date Analyzed: 2009-09-11 Analyzed By: RR
Prep Batch: 54154 QC Preparation: 2009-09-11 Prepared By: KV

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Dissolved Chromium	0.0990	$_{ m mg/L}$	1	0.100	0.003	96	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Dissolved Chromium	0.0990	mg/L	1	0.100	0.003	96	75 - 125	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63487 Date Analyzed: 2009-09-11 Analyzed By: AH Prep Batch: 54190 QC Preparation: 2009-09-11 Prepared By: AH

	MS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Ammonia-N	5.38	mg/L	1	5.00	0.56	96	57.2 - 133

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec .		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Ammonia-N	5.77	$\mathrm{mg/L}$	1	5.00	0.56	104	57.2 - 133	7	20

Matrix Spike (MS-1) Spiked Sample: 209569

QC Batch: 63531Prep Batch: 54234

Date Analyzed: 2009-09-13 QC Preparation: 2009-09-13

Analyzed By: AH Prepared By: AH

Page Number: 57 of 78

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
Total Kjeldahl Nitrogen - N	53.8	$\mathrm{mg/L}$	1	50.0	< 2.45	108	61.2 - 118

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Kjeldahl Nitrogen - N	52.6	mg/L	1	50.0	< 2.45	105	61.2 - 118	2	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63546Prep Batch: 54109 Date Analyzed: 2009-09-15 QC Preparation: 2009-09-10

Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		${ m Rec.}$
Param	Result	Units	Dil.	${ m Amount}$	Result	$\mathrm{Rec}.$	Limit
Total Calcium	363	mg/L	1	50.0	314	98	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil .	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Calcium	359	mg/L	1	50.0	314	90	75 - 125	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

Analyzed By: RR QC Batch: 63546Date Analyzed: 2009-09-15 Prep Batch: 54109QC Preparation: 2009-09-10 Prepared By: KV

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit
Total Potassium	151	$\mathrm{mg/L}$	1	50.0	91.2	120	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Potassium	144	mg/L	1	50.0	91.2	106	75 - 125	5	20

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63546 Prep Batch: 54109 Date Analyzed: 2009-09-15 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

Page Number: 58 of 78

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	$\mathrm{Rec}.$	Limit
Total Magnesium	433	$\mathrm{mg/L}$	1	50.0	388	90	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			$_{ m Spike}$	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Magnesium	431	$\mathrm{mg/L}$	1	50.0	388	86	75 - 125	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209227

QC Batch: 63546 Prep Batch: 54109 Date Analyzed: 2009-09-15 QC Preparation: 2009-09-10 Analyzed By: RR Prepared By: KV

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit
Total Sodium	1100	$\mathrm{mg/L}$	1	50.0	1050	100	75 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil .	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Sodium	1100	mg/L	1	50.0	1050	100	75 - 125	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209098

 QC Batch:
 63678
 Date Analyzed:
 2009-09-17

 Prep Batch:
 54367
 QC Preparation:
 2009-09-17

Analyzed By: KV Prepared By: KV

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit
Total Organic Carbon	49.1	$\mathrm{mg/L}$	1	50.0	1.16	96	66.9 - 121

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Total Organic Carbon	49.3	mg/L	1	50.0	1.16	96	66.9 - 121	0	20

Work Order: 9090810

HELSTF Diesel Spill Groundwater

Page Number: 59 of 78

Matrix Spike (MS-1) Spiked Sample: 209323

QC Batch: 63680 Date Analyzed: 2009-09-04 Analyzed By: $_{
m JR}$ Prep Batch: 54369 QC Preparation: 2009-09-04 Prepared By: $_{
m JR}$

MSSpike Matrix Rec. Param Result Units Dil. AmountResult Rec. Limit Bromide 2610 2780 <21.9 90 - 110 mg/L556 94

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		${ m Rec.}$		RPD
Param	Result	Units	Dil.	${f Amount}$	Result	Rec.	Limit	RPD	Limit
Bromide	2600	mg/L	556	2780	<21.9	94	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209323

QC Batch: 63680 Date Analyzed: 2009-09-04 Analyzed By: $_{
m JR}$ Prep Batch: 54369QC Preparation: Prepared By: $_{
m JR}$ 2009-09-04

MSSpike MatrixRec. Result Dil. Limit Param Units ${
m Amount}$ Result Rec. Chloride 13600 mg/L556 13900 < 356 96 90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec .	Limit	RPD	Limit
Chloride	13600	mg/L	556	13900	< 356	96	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209323

QC Batch: 63680 Date Analyzed: 2009-09-04 Analyzed By: $_{
m JR}$ Prep Batch: 54369QC Preparation: 2009-09-04 Prepared By: JR

MSSpike Matrix Rec. Param Result Units Dil. Result Rec. Limit Amount Fluoride 2580 mg/L556 2780 < 24.193 90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Fluoride	2580	mg/L	556	2780	<24.1	93	90 - 110	0	20

Work Order: 9090810 HELSTF Diesel Spill Groundwater

Matrix Spike (MS-1) Spiked Sample: 209323

QC Batch: 63680 Prep Batch: 54369 Date Analyzed: 2009-09-04 QC Preparation: 2009-09-04

Analyzed By: JR Prepared By: JR

Page Number: 60 of 78

	MS			Spike	Matrix		$\mathrm{Rec}.$
Param	Result	Units	Dil.	${ m Amount}$	Result	$\mathrm{Rec}.$	Limit
Sulfate	15100	$\mathrm{mg/L}$	556	13900	1890	95	90 - 110

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		$\mathrm{Rec}.$		RPD
Param	Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Sulfate	15100	$\mathrm{mg/L}$	556	13900	1890	95	90 - 110	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 209096

QC Batch: 63681 Prep Batch: 54370 Date Analyzed: 2009-09-17 QC Preparation: 2009-09-17 Analyzed By: KV Prepared By: KV

		MS			Spike	Matrix		$\mathrm{Rec.}$
Param		Result	Units	Dil.	${f Amount}$	Result	Rec .	Limit
Nitrate and Nitrite as N	33	0.183	${ m mg/L}$	2	0.200	0.124	30	80 - 120

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

		MSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	${ m Amount}$	Result	Rec.	Limit	RPD	Limit
Nitrate and Nitrite as N	34	0.192	mg/L	2	0.200	0.124	34	80 - 120	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Standard (CCV-1)

QC Batch: 63337

Date Analyzed: 2009-09-04

Analyzed By: JR

			${ m CCVs} \ { m True}$	${ m CCVs} \ { m Found}$	$rac{ ext{CCVs}}{ ext{Percent}}$	Percent Recovery	Date
			rrue	Found	1 ercent	necovery	Date
Param	Flag	${ m Units}$	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Hexavalent Chromium		$\mathrm{mg/L}$	0.500	0.502	100	90 - 110	2009-09-04

Standard (CCV-2)

QC Batch: 63337

Date Analyzed: 2009-09-04

Analyzed By: JR

³³ Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

³⁴Matrix spike recovery out of control limits due to matrix interference. Use LCS/LCSD to demonstrate analysis is under control.

Page Number: 61 of 78

			H	ELSIF Diesei	Spill G	roundwater			
Param		Flag	Units	${ m CCVs} \ { m True} \ { m Conc.}$	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	$egin{array}{c} { m Date} \ { m Analyzed} \end{array}$	
Hexavalent	Chromium		$\mathrm{mg/L}$	0.500	0.505	101	90 - 110	2009-09-04	
Standard	(ICV-1)								
QC Batch: 63344			Date	Analyzed: 2	Analy	yzed By: JG			
Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.		CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed	
pH	1148	s.u.	7.00	7.00		100	98 - 102	2009-09-04	
Standard QC Batch:			Date	Analyzed: 2	009-09-0	04	Anal	yzed By: JG	
			CCVs True	CCVs Found		CCVs Percent	Percent Recovery	Date	
Param	Flag	Units	Conc.	Conc.		Recovery	Limits	${f Analyzed}$	
рН		s.u.	7.00	7.00		100	98 - 102	2009-09-04	
Standard	(CCV-1)								
QC Batch:	63348		Date	Analyzed: 2	009-09-0	08	Analyzed By: MT		
_			${ m CCVs} \ { m True} \ { m $	CCVs Found	l	CCVs Percent	Percent Recovery	Date	
Param GRO	Flag	$\frac{\rm Units}{\rm mg/L}$	Conc. 1.00	Conc. 1.11		Recovery 111	Limits 80 - 120	Analyzed 2009-09-08	
Standard	(CCV-2)	8/ 12	1.00	1.11		111	00 120	2000 00 00	
QC Batch:			Date	Analyzed: 2	009-09-0	08	Analy	zed By: MT	
T-	-		CCVs True	CCVs Found		CCVs Percent	Percent Recovery	Date	

Standard (CCV-1)

Flag

Units

mg/L

 ${\rm Conc.}$

1.00

 Param

GRO

QC Batch: 63359 Date Analyzed: 2009-09-08 Analyzed By:

 ${\rm Conc.}$

1.10

Recovery

110

 ${\bf Limits}$

80 - 120

 ${\bf Analyzed}$

2009-09-08

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
DRO		$\mathrm{mg/L}$	250	298	119	80 - 120	2009-09-08

Standard (CCV-2)

QC Batch: 63359

Date Analyzed: 2009-09-08

Analyzed By:

Page Number: 62 of 78

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
DRO		$_{ m mg/L}$	250	283	113	80 - 120	2009-09-08

Standard (ICV-1)

QC Batch: 63372

Date Analyzed: 2009-09-09

Analyzed By: TP

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Mercury		$\mathrm{mg/L}$	0.00100	0.000980	98	90 - 110	2009-09-09

Standard (CCV-1)

 $QC \ Batch: \ 63372$

Date Analyzed: 2009-09-09

Analyzed By: TP

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc.	Recovery	Limits	Analyzed
Total Mercury		$\mathrm{mg/L}$	0.00100	0.000990	99	90 - 110	2009-09-09

Standard (CCV-2)

QC Batch: 63393

Date Analyzed: 2009-09-10

Analyzed By: MN

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Phenol		$\mathrm{mg/L}$	60.0	54.6	91	80 - 120	2009-09-10
1,4-Dichlorobenzene (para)		m mg/L	60.0	59.5	99	80 - 120	2009-09-10
2-Nitrophenol		m mg/L	60.0	63.9	106	80 - 120	2009-09-10
2,4-Dichlorophenol		m mg/L	60.0	63.6	106	80 - 120	2009-09-10
${\it Hexachlorobutadiene}$		m mg/L	60.0	58.7	98	80 - 120	2009-09-10
4-Chloro-3-methylphenol		m mg/L	60.0	68.9	115	80 - 120	2009-09-10
2,4,6-Trichlorophenol		m mg/L	60.0	59.6	99	80 - 120	2009-09-10
${ m Acenaphthene}$		m mg/L	60.0	60.2	100	80 - 120	2009-09-10
Diphenylamine		m mg/L	60.0	59.3	99	80 - 120	2009-09-10

 $continued \dots$

Work Order: 9090810	Page Number: 63 of 78
I CTT Discal Caill Casuadayeten	

$standard\ continued\ \dots$							
			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc .	Recovery	Limits	${ m Analyzed}$
Pentachlorophenol	35	$\mathrm{mg/L}$	60.0	41.9	70	80 - 120	2009-09-10
Fluoranthene		m mg/L	60.0	59.8	100	80 - 120	2009-09-10
Di-n-octylphthalate		$\mathrm{mg/L}$	60.0	69.6	116	80 - 120	2009-09-10
$\mathrm{Benzo}(\mathrm{a})\mathrm{pyrene}$		m mg/L	60.0	67.8	113	80 - 120	2009-09-10

					Spike	$\operatorname{Percent}$	Recovery
Surrogate	Flag	Result	Units	$\operatorname{Dilution}$	${f Amount}$	Recovery	Limit
2-Fluorophenol		61.1	$\mathrm{mg/L}$	1	60.0	102	80 - 120
Phenol-d5		57.9	${ m mg/L}$	1	60.0	96	80 - 120
${ m Nitrobenzene-d5}$		60.5	m mg/L	1	60.0	101	80 - 120
2-Fluorobiphenyl		58.9	${ m mg/L}$	1	60.0	98	80 - 120
2,4,6-Tribromophenol		70.2	${ m mg/L}$	1	60.0	117	80 - 120
m Terphenyl-d14		56.4	m mg/L	1	60.0	94	80 - 120

Standard (ICV-1)

QC Batch: 63415 Analyzed By: RR Date Analyzed: 2009-09-10

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	$\operatorname{Recovery}$	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
Total Silver		$_{ m mg/L}$	0.250	0.250	100	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	Analyzed
Total Aluminum		mg/L	1.00	0.943	94	90 - 110	2009-09-10

Standard (ICV-1)

 $QC \ Batch: \ 63415$ Date Analyzed: 2009-09-10 Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Arsenic		$_{ m mg/L}$	2.00	1.99	100	90 - 110	2009-09-10

³⁵Control analyte out of CCV control limits. Result biased low.

Work Order: 9090810 HELSTF Diesel Spill Groundwater Page Number: 64 of 78

Standard (1	ICV-1)
-------------	--------

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Barium		$_{ m mg/L}$	1.00	1.01	101	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	Analyzed
Total Beryllium		$_{ m mg/L}$	1.00	1.00	100	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	Analyzed
Total Cadmium		$_{ m mg/L}$	1.00	1.02	102	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	$\operatorname{Recovery}$	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
Total Cobalt		$\mathrm{mg/L}$	1.00	0.989	99	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR

			$\rm CCVs$	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	Analyzed
Total Chromium		$\mathrm{mg/L}$	1.00	1.03	103	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415 Date Analyzed: 2009-09-10 Analyzed By: RR

Work Order: 9090810 HELSTF Diesel Spill Groundwater

-							
			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Copper		$_{ m mg/L}$	1.00	1.02	102	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Page Number: 65 of 78

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Iron		$\mathrm{mg/L}$	1.00	0.982	98	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Manganese		$_{ m mg/L}$	1.00	1.00	100	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Molybdenum		mg/L	1.00	0.993	99	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Nickel		mg/L	1.00	0.997	100	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Work Order: 9090810 HELSTF Diesel Spill Groundwater

			$\overline{\text{CCVs}}$	CCVs	$_{ m CCVs}$	Percent	_
			True	Found	$\operatorname{Percent}$	$\operatorname{Recovery}$	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${\bf Analyzed}$
Total Phosphorous		mg/L	5.00	4.97	99	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Page Number: 66 of 78

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Lead		$\mathrm{mg/L}$	2.00	2.06	103	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	Analyzed
Total Antimony		$\mathrm{mg/L}$	2.00	2.01	100	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Selenium		$\mathrm{mg/L}$	1.00	1.00	100	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
Total Thallium		$\mathrm{mg/L}$	5.00	5.07	101	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Work Order: 9090810 HELSTF Diesel Spill Groundwater

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Vanadium		$\mathrm{mg/L}$	1.00	1.03	103	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Page Number: 67 of 78

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
Total Zinc		$\mathrm{mg/L}$	1.00	1.02	102	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	$\operatorname{Recovery}$	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Silver		$\mathrm{mg/L}$	0.125	0.127	102	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	Analyzed
Total Aluminum		mg/L	1.00	0.924	92	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Arsenic		$_{ m mg/L}$	1.00	0.959	96	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Work Order: 9090810 HELSTF Diesel Spill Groundwater

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Barium		$\mathrm{mg/L}$	1.00	1.01	101	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Page Number: 68 of 78

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	Analyzed
Total Beryllium		$\mathrm{mg/L}$	1.00	0.986	99	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Cadmium		$\mathrm{mg/L}$	1.00	0.983	98	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
Total Cobalt		$_{ m mg/L}$	1.00	0.974	97	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	Analyzed
Total Chromium		mg/L	1.00	0.998	100	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Work Order: 9090810 HELSTF Diesel Spill Groundwater

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Copper		mg/L	1.00	1.01	101	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Page Number: 69 of 78

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	$\operatorname{Recovery}$	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Iron		$_{ m mg/L}$	1.00	0.954	95	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	Analyzed
Total Manganese		$\mathrm{mg/L}$	1.00	0.997	100	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Molybdenum		mg/L	1.00	0.960	96	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Nickel		$\mathrm{mg/L}$	1.00	0.963	96	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Work Order: 9090810 HELSTF Diesel Spill Groundwater

			CCVa	COVa	CCVa	Dancont	
			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	$\operatorname{Recovery}$	Date
Param	Flag	${ m Units}$	Conc .	Conc .	Recovery	Limits	Analyzed
Total Phosphorous	•	$\mathrm{mg/L}$	5.00	4.78	96	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Page Number: 70 of 78

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Lead		$\mathrm{mg/L}$	1.00	0.962	96	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Antimony		${ m mg/L}$	1.00	0.974	97	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	Analyzed
Total Selenium		$_{ m mg/L}$	1.00	0.976	98	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Thallium		$\mathrm{mg/L}$	1.00	0.995	100	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	Analyzed
Total Vanadium		mg/L	1.00	1.01	101	90 - 110	2009-09-10

Standard (CCV-1)

QC Batch: 63415

Date Analyzed: 2009-09-10

Analyzed By: RR

Page Number: 71 of 78

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	$\operatorname{Recovery}$	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
Total Zinc		$\mathrm{mg/L}$	1.00	1.01	101	90 - 110	2009-09-10

Standard (ICV-1)

QC Batch: 63422

Date Analyzed: 2009-09-10

Analyzed By: AH

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Cyanide		m mg/L	0.120	0.116	97	85 - 115	2009-09-10

Standard (CCV-1)

 $QC\ Batch: \ 63422$

Date Analyzed: 2009-09-10

Analyzed By: AH

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Cyanide		mg/L	0.120	0.120	100	85 - 115	2009-09-10

Standard (ICV-1)

QC Batch: 63426

Date Analyzed: 2009-09-10

Analyzed By: DS

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	$_{ m Units}$	$\operatorname{Conc.}$	Conc .	Recovery	Limits	Analyzed
HMX		$\mu \mathrm{g/L}$	500	505	101	85 - 115	2009-09-10
RDX		$\mu { m g}/{ m L}$	500	478	96	85 - 115	2009-09-10
1,3,5-Trinitrobenzene		$\mu { m g}/{ m L}$	500	490	98	85 - 115	2009-09-10
1,3-Dinitrobenzene		$\mu { m g}/{ m L}$	500	507	101	85 - 115	2009-09-10
${ m Nitrobenzene}$		$\mu { m g}/{ m L}$	500	507	101	85 - 115	2009-09-10
Tetryl		$\mu { m g}/{ m L}$	500	485	97	85 - 115	2009-09-10
TNT		$\mu { m g}/{ m L}$	500	481	96	85 - 115	2009-09-10
4-Amino-DNT		$\mu { m g}/{ m L}$	500	518	104	85 - 115	2009-09-10
2-Amino-DNT		$\mu { m g/L}$	500	540	108	85 - 115	2009-09-10

 $continued \dots$

Work Order: 9090810	Page Number: 72 of 78	
romp by 10 dl o 1 .		

standard continued								
			CCVs	CCVs	CCVs	$\operatorname{Percent}$		
			True	Found	$\operatorname{Percent}$	Recovery	Date	
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$	
2,6-DNT		$\mu \mathrm{g/L}$	500	466	93	85 - 115	2009-09-10	
2,4-DNT		$\mu { m g}/{ m L}$	500	520	104	85 - 115	2009-09-10	
2-NT		$\mu { m g}/{ m L}$	500	503	101	85 - 115	2009-09-10	
4-NT		$\mu \mathrm{g}/\mathrm{L}$	500	433	87	85 - 115	2009-09-10	
3-NT		$\mu { m g}/{ m L}$	500	493	99	85 - 115	2009-09-10	
		·			G :1	D.	T.	

					Spike	$\operatorname{Percent}$	$\operatorname{Recovery}$
$\mathbf{Surrogate}$	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limit
1,2-Dinitrobenzene		456	$\mu \mathrm{g/L}$	1	500	91	85 - 115

Standard (CCV-1)

 $QC\ Batch: \ 63426$ Date Analyzed: 2009-09-10 Analyzed By: DS

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
HMX		$\mu \mathrm{g/L}$	500	545	109	85 - 115	2009-09-10
RDX		$\mu { m g}/{ m L}$	500	461	92	85 - 115	2009-09-10
1,3,5-Trinitrobenzene		$\mu { m g}/{ m L}$	500	483	97	85 - 115	2009-09-10
1,3-Dinitrobenzene		$\mu { m g}/{ m L}$	500	516	103	85 - 115	2009-09-10
${ m Nitrobenzene}$		$\mu { m g}/{ m L}$	500	511	102	85 - 115	2009-09-10
Tetryl		$\mu { m g}/{ m L}$	500	467	93	85 - 115	2009-09-10
TNT		$\mu { m g}/{ m L}$	500	486	97	85 - 115	2009-09-10
4-Amino-DNT		$\mu { m g}/{ m L}$	500	538	108	85 - 115	2009-09-10
$2 ext{-Amino-DNT}$		$\mu { m g}/{ m L}$	500	551	110	85 - 115	2009-09-10
2,6-DNT		$\mu { m g}/{ m L}$	500	502	100	85 - 115	2009-09-10
2,4-DNT		$\mu { m g}/{ m L}$	500	552	110	85 - 115	2009-09-10
2-NT		$\mu { m g}/{ m L}$	500	535	107	85 - 115	2009-09-10
4-NT		$\mu { m g}/{ m L}$	500	500	100	85 - 115	2009-09-10
3-NT		$\mu { m g}/{ m L}$	500	507	101	85 - 115	2009-09-10

					Spike	Percent	Recovery
$\operatorname{Surrogate}$	Flag	Result	Units	Dilution	${f Amount}$	Recovery	Limit
1,2-Dinitrobenzene		491	$\mu \mathrm{g/L}$	1	500	98	85 - 115

Standard (ICV-1)

 $QC \ Batch: \ 63462$ Date Analyzed: 2009-09-11 Analyzed By: RR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	$_{ m Units}$	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Dissolved Chromium		$_{ m mg/L}$	1.00	1.03	103	90 - 110	2009-09-11

Page Number: 73 of 78

Standard (C	(CV-1)
-------------	--------

000	T	
QC Batch: 63462	Date Analyzed: 2009-09-11	Analyzed By: RR
GO Daton, USTO2	Date Allaryzeu. 2003-03-11	Allaivzeu Dv. Ilit.

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	$_{ m Units}$	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Dissolved Chromium		$_{ m mg/L}$	1.00	1.02	102	90 - 110	2009-09-11

Standard (ICV-1)

	QC Batch:	63474	Date Analyzed:	2009-09-08	Analyzed By:	MD
--	-----------	-------	----------------	------------	--------------	----

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Dissolved Solids		$_{ m mg/L}$	1000	1010	101	90 - 110	2009-09-08

Standard (CCV-1)

QC Batch: 63474	Date Analyzed: 2009-09-08	Analyzed By: MD
-----------------	---------------------------	-----------------

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Dissolved Solids		mg/L	1000	992	99	90 - 110	2009-09-08

Standard (ICV-1)

QC Batch:	63487	Date Analyzed:	2009-09-11	Analyzed By:	AH
-----------	-------	----------------	------------	--------------	----

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	$\operatorname{Recovery}$	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
Ammonia-N		$\mathrm{mg/L}$	5.00	4.90	98	85 - 115	2009-09-11

Standard (CCV-1)

QC Batch: 63487 Analyzed By: AH Date Analyzed: 2009-09-11

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	$\operatorname{Recovery}$	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Ammonia-N		$_{ m mg/L}$	5.00	5.10	102	85 - 115	2009-09-11

Standard (ICV-1)

QC Batch: 63531Date Analyzed: 2009-09-13 Analyzed By: AH

Page Number: 74 of 78

zecpost z min sepo			HEL	STF Die	esel Spill Gro	oundwater	0	
Param		Flag	Units	CCV: True Conc	Found		Percent Recovery Limits	Date Analyzed
Total Kjeldahl Nitr	ogen - N		$\mathrm{mg/L}$	5.00		96	85 - 115	2009-09-13
Standard (CCV-	1)							
QC Batch: 63531			Date A	nalyzed:	2009-09-13	1	Analy	zed By: AH
Param		Flag	${ m Units}$	CCV: True Conc	Found		Percent Recovery Limits	$egin{array}{c} { m Date} \ { m Analyzed} \end{array}$
Total Kjeldahl Nitr	ogen - N	riag	mg/L	5.00		102	85 - 115	2009-09-13
Standard (ICV-1 QC Batch: 63546)		Date Aı	nalyzed:	2009-09-15		Analy	zed By: RR
			${ m CCV} \ { m Tru} \epsilon$		$\begin{array}{c} {\rm CCVs} \\ {\rm Found} \end{array}$	${ m CCVs} \ { m Percent}$	Percent Recovery	Date
Param Total Calcium	Flag	$\frac{\rm Units}{\rm mg/L}$	Conc 50.0		Conc. 50.7	Recovery 101	Limits 90 - 110	Analyzed 2009-09-15
Standard (ICV-1)	mg/ L	90.0		00.1	101	50 110	2009 05 10
QC Batch: 63546			Date Ar	nalyzed:	2009-09-15		Analy	zed By: RR
Param	Elo m	Units	CC' Tru Con	ıe	CCVs Found Conc.	CCVs Percent	Percent Recovery Limits	Date
Total Potassium	Flag	mg/L	50.		51.7	Recovery 103	90 - 110	Analyzed 2009-09-15
Standard (ICV-1 QC Batch: 63546)	S,	Date Ar					zed By: RR
D	T) l	TI:4	CC Tr		CCVs Found	CCVs Percent	Percent Recovery	Date

Standard (ICV-1)

Total Magnesium

Flag

Units

mg/L

Param

QC Batch: 63546 Date Analyzed: 2009-09-15 Analyzed By: RR

Conc.

52.4

Recovery

105

Limits

90 - 110

 ${\bf Analyzed}$

2009-09-15

 ${\rm Conc.}$

50.0

Work Order: 9090810 HELSTF Diesel Spill Groundwater

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Sodium		$\mathrm{mg/L}$	50.0	51.6	103	90 - 110	2009-09-15

Standard (CCV-1)

QC Batch: 63546

Date Analyzed: 2009-09-15

Analyzed By: RR

Page Number: 75 of 78

			${ m CCVs} \ { m True}$	${ m CCVs} \ { m Found}$	${ m CCVs} \ { m Percent}$	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	${\bf Analyzed}$
Total Calcium		mg/L	50.0	52.4	105	90 - 110	2009-09-15

Standard (CCV-1)

QC Batch: 63546

Date Analyzed: 2009-09-15

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Potassium		${ m mg/L}$	50.0	53.6	107	90 - 110	2009-09-15

Standard (CCV-1)

QC Batch: 63546

Date Analyzed: 2009-09-15

Analyzed By: RR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	Analyzed
Total Magnesium		$_{ m mg/L}$	50.0	52.7	105	90 - 110	2009-09-15

Standard (CCV-1)

QC Batch: 63546

Date Analyzed: 2009-09-15

Analyzed By: RR

Analyzed By: KV

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	${ m Analyzed}$
Total Sodium		$_{ m mg/L}$	50.0	52.8	106	90 - 110	2009-09-15

Standard (CCV-1)

QC Batch: 63678

Date Analyzed: 2009-09-17

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${\bf Analyzed}$
Total Organic Carbon		mg/L	50.0	51.5	103	80 - 120	2009-09-17

Standard (CCV-2)

QC Batch: 63678

Date Analyzed: 2009-09-17

Analyzed By: KV

Page Number: 76 of 78

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Total Organic Carbon		$\mathrm{mg/L}$	50.0	50.9	102	80 - 120	2009-09-17

Standard (CCV-1)

QC Batch: 63680

Date Analyzed: 2009-09-04

Analyzed By: JR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	Analyzed
Bromide		${ m mg/L}$	5.00	4.64	93	90 - 110	2009-09-04

Standard (CCV-1)

QC Batch: 63680

Date Analyzed: 2009-09-04

Analyzed By: JR

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	Conc .	Recovery	Limits	${ m Analyzed}$
Chloride		$_{ m mg/L}$	25.0	23.6	94	90 - 110	2009-09-04

Standard (CCV-1)

QC Batch: 63680

Date Analyzed: 2009-09-04

Analyzed By: JR

			CCVs	CCVs	CCVs	$\operatorname{Percent}$	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	Analyzed
Fluoride		mg/L	5.00	4.62	92	90 - 110	2009-09-04

Standard (CCV-1)

QC Batch: 63680

Date Analyzed: 2009-09-04

Analyzed By: JR

Page Number: 77 of 78

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Sulfate		mg/L	25.0	23.1	92	90 - 110	2009-09-04
Standard	(CCV-2)						
QC Batch:	63680		Date An	alyzed: 2009-	09-04	Ana	lyzed By: JR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	$_{ m Units}$	Conc.	Conc.	Recovery	Limits	Analyzed
Bromide	1146	mg/L	5.00	4.65	93	90 - 110	2009-09-04
<u>Bronnac</u>		mg/ L	9.00	1.00		90 - 110	2003-03-04
Standard	(CCV-2)						
QC Batch:	63680		Date An	alyzed: 2009-	09-04	Ana	lyzed By: JR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc .	Conc .	Recovery	Limits	Analyzed
Chloride		$\mathrm{mg/L}$	25.0	23.6	94	90 - 110	2009-09-04
Standard	(CCV-2)						
QC Batch:	63680		Date An	alyzed: 2009-	09-04	Ana	lyzed By: JR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	Analyzed
Fluoride	0	$\mathrm{mg/L}$	5.00	4.62	92	90 - 110	2009-09-04
Standard	(CCV-2)						
QC Batch:	63680		Date An	alyzed: 2009-	09-04	Ana	lyzed By: JR
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	Analyzed
Sulfate		mg/L	25.0	23.2	93	90 - 110	2009-09-04

Standard (ICV-1)

QC Batch: 63681 Date Analyzed: 2009-09-17 Analyzed By: KV

 ${\it Work~Order:~9090810} \\ {\it HELSTF~Diesel~Spill~Groundwater}$

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${\bf Analyzed}$
Nitrate and Nitrite as N		$_{ m mg/L}$	0.200	0.205	102	85 - 115	2009-09-17

Standard (CCV-1)

QC Batch: 63681

Date Analyzed: 2009-09-17

Analyzed By: KV

Page Number: 78 of 78

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	$\operatorname{Conc.}$	$\operatorname{Conc.}$	Recovery	Limits	${ m Analyzed}$
Nitrate and Nitrite as N		$_{ m mg/L}$	0.200	0.188	94	85 - 115	2009-09-17

Standard (ICV-1)

QC Batch: 63683

Date Analyzed: 2009-09-15

Analyzed By: JG

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc .	Recovery	Limits	${\bf Analyzed}$
Hydroxide Alkalinity		mg/L as $CaCo3$	0.00	<1.00		90 - 110	2009-09-15
Carbonate Alkalinity		mg/L as $CaCo3$	0.00	240		90 - 110	2009 - 09 - 15
Bicarbonate Alkalinity		mg/L as $CaCo3$	0.00	8.00		90 - 110	2009 - 09 - 15
Total Alkalinity		mg/L as CaCo3	250	248	99	90 - 110	2009 - 09 - 15

Standard (CCV-1)

 $QC \ Batch: \ 63683$

Date Analyzed: 2009-09-15

Analyzed By: JG

			CCVs	CCVs	CCVs	Percent	
			True	Found	$\operatorname{Percent}$	Recovery	Date
Param	Flag	Units	Conc.	Conc .	Recovery	Limits	${ m Analyzed}$
Hydroxide Alkalinity		mg/L as CaCo3	0.00	<1.00		90 - 110	2009-09-15
Carbonate Alkalinity		mg/L as $CaCo3$	0.00	236		90 - 110	2009-09-15
Bicarbonate Alkalinity		mg/L as CaCo3	0.00	8.00		90 - 110	2009-09-15
Total Alkalinity		mg/L as $CaCo3$	250	244	98	90 - 110	2009 - 09 - 15

1922 ASTON BIOLOGY 1201 1088 MM 88017 SET # 4251-259-626

975-532-1587 T

HOR

skum afrija (Til)

A RETURNIANTURE Emily Peere (5-18-00) REWARKS Z W LS 43635707 sluauluM Jel. Jac. Poine & leta? Alleno Jeleva M A REINAMENE BY BENNIER ARALYSIS REQUESTED jane, HCHL MURTI BY: (SIR) MATHERS Savadiq X3 Jack, 0049 AM ED MARE 001 Æ See of the second OHE Paris, ORO MINE SPECIAL INSTITUTIONS LOOPING IS JUF KEND MATURES *6*) NO OF CONTAMERS 204322 LAF W 一 正正をひた 聖を田屋 4131 Ž Ę RWI FR \$ 5 21/2 HELSTF Diesel Shill Gaundager GLOSSIC CONTOUR CALLED A CALLE TOTAL NO OF CONTAINERS CHANGERISTOPSHIR COMPORNTO REDRE SAMPLEE SHAME BEREIGH **新四周二萬兩** PROJECT INFORMALION (D2X) SEMPLEMOS SEMPLINES PROJECT Nº NAC GR CAMPING ID NO Brad Daws PROJECT NO DAIL.

ra ha ha ka ka ka

OFFICE AND ALTERNATION OF THE PARTY OF THE P

PLEASE SEE ATTACHED ANALYTÉ LIST FOR DETAILS

188 S Terror Bird Se Fall

Las Circis, NW 88011

575-532-1526 u 575-532-1557 t

12

Cal

HABE

CHAIN OF CUSTODY RECORD

REEDVEN GENALIER NOTE 24 HR HOLD FUNERA 置きるる 11.00 / 9-8-09 TIME ON Collegening Jrace PRINTED NAT PLEASE SEE ATTACHED ANALYTELISI FOR DETAILS LS 436357 9 N NO. IN CASE WATER AMALYSIS REDUKTI ED FAINT ED MAINES BLATANED BY suor ssig Janes. SIEIRIN SSIT 8/20 SIBIBM IBIOT No. 152 32 Mg SPECIAL INSTRUCTIONS | COMMUNIS. PATTING. 209322 B NO. OF CONTAMERS LABRO PAM EL MANG INE! DATE 5000 T FIG INC MATER RATIFIE 3 HELST F Diesel Stall Gaundanter IOTAL NO OF CONTAINING TO TOWER TOWN THE FEE CHARCEDINIONSBALS COMPONENT O RECORD HISF-0154HCF-005-008 SAMPLEE SAMPLES RELEMEN HOURT WAR PROJECT INCOMMUNICAL SAMPLEYS SERMATURE PACLET MANAGER SHIFFING ID NO PROPERT NO CALE